اختيار الموقع            تسجيل دخول
 

تصفح المحتوي RDA
التصفح حسب الموضوعات
التصفح حسب اللغة
التصفح حسب الناشر
التصفح حسب تاريخ النشر
التصفح حسب مكان النشر
التصفح حسب المؤلفين
تصفح الهيئات
التصفح المؤتمرات
التصفح حسب نوع المادة
التصفح حسب العلاقة بالعمل
تم العثور علي : 2253
 تم العثور علي : 2253
  
 
إعادة البحث

Articles 2023
   

Articles 30 cm. ,2024
   

Articles 2024.
   

Thesis 2024

Articles 2023.
   

Thesis 2024.

Articles 2024
   

Thesis 2024.
The application of anaerobic processes has tended to be restricted to
strong industrial wastewaters. The success of anaerobic processes as a
treatment technology for high strength
- industrial wastewater has meant
that the potential of these processes for the treatment of low strength
wastewater has been evaluated. However
- one of the main challenges to
anaerobic technology remains its applicability to low-strength wastewaters
like sewage. The up-flow anaerobic sludge blanket (UASB) reactor is the
most widely and successfully used high rate anaerobic system for
wastewater treatment. The aim of the thesis is to increase the efficiency of
the system by adding conductive materials. Ecofriendly bio-adsorbents
such as Rice Straw
- Phragmites australis - and Commercial Activated
Carbon were used for chemical oxygen demand (COD) removal and
Biogas production from wastewater. Experiments using a multilevel
complete factorial design were conducted to optimize the removal
effectiveness of COD (Chemical Oxygen Demand) while minimizing the
number of experiments required. To verify the structural characteristics
- elemental composition - and the existence of various functional groups - a
characterization investigation was conducted using X-ray diffractometry
(XRD)
- Fourier Transform InfraRed spectroscopy (FTIR) - Scanning
Electron Microscopy (SEM)
- and Brunner–Emmett–Teller (BET). Batch
experimental trails were operated to determine the optimum adsorpant
material
- its optimum dose - as well as the other operational parameters - such as solution pH - inoculation concentration - and their interactions
during COD removal and Biogas production were investigated. The
maximum removal of COD (99.63%) and the biogas production (5.16 mL
biogas/mg COD removed) of Rice Straw Biochar (RSB) were at pH value
- biochar dose - and buffalo sludge dose concentration were equal to 8 - 2 g/L -
IV
and 0%
- respectively. Commercial Activated Carbon (AC) has achieved
maximum removal of COD (95.55%)
- and the biogas production (6.08 mL
biogas/mg COD removed) at pH
- biochar dose - and buffalo sludge dose
concentration were equal to 5
- 2 g/L - and 0% - respectively. The maximum
removal of COD (98.88%) and the biogas production (4.08 mL biogas/mg
COD removed) of Phragmites australis Biochar (PaB) were at pH
- biochar dose - and buffalo sludge dose concentration were equal to 5 - 2 g/L - and 0% - respectively. These results revealed that rice straw biochar can be
used as an effective and low-cost adsorbent to remove COD from
wastewater. The surface properties of rice straw biochar substantially
affect its capability of removing metal ions from wastewater
- and fourier
transform infrared spectroscopy (FTIR) spectroscopy is a great tool to
observe this surface composition. Two identical pilot-scale models
simulating “Up-flow Anaerobic Sludge Blanket” reactors (UASBs) were
built and operated continuously within the work frame of the present work
to investigate its performance and efficiency in treating buffalo
wastewater treatment. The effect of supporting media on the UASB
efficiency will be also invistgated at the field. The two UASB reactors
were operated under the same operational conditions and scenario
- the
reators operated at HRT equals 4hr and ambiaint temperature. Both R4
(conventional UASB) and R3 (modified UASB) were fed by settleled
wastewater . The condutive media was not added to R3 at the beigning. After the start-up
- the modified UASB reactor (R3) was inoculated with
rice straw biochar through an inclined pipe. Samples were collected and
analyzed periodically twice weekly. The results indicated that; For the
conventional reactor
- the maximum removal efficiency of COD - TSS - TDS - Color - and Turbidity was 79.89% - 74.04% - 80.11% - 72.72% - and
75.70%
- respectively. Cumulative biogas production reached 0.028 mL - The application of anaerobic processes has tended to be restricted to
strong industrial wastewaters. The success of anaerobic processes as a
treatment technology for high strength
- industrial wastewater has meant
that the potential of these processes for the treatment of low strength
wastewater has been evaluated. However
- one of the main challenges to
anaerobic technology remains its applicability to low-strength wastewaters
like sewage. The up-flow anaerobic sludge blanket (UASB) reactor is the
most widely and successfully used high rate anaerobic system for
wastewater treatment. The aim of the thesis is to increase the efficiency of
the system by adding conductive materials. Ecofriendly bio-adsorbents
such as Rice Straw
- Phragmites australis - and Commercial Activated
Carbon were used for chemical oxygen demand (COD) removal and
Biogas production from wastewater. Experiments using a multilevel
complete factorial design were conducted to optimize the removal
effectiveness of COD (Chemical Oxygen Demand) while minimizing the
number of experiments required. To verify the structural characteristics
- elemental composition - and the existence of various functional groups - a
characterization investigation was conducted using X-ray diffractometry
(XRD)
- Fourier Transform InfraRed spectroscopy (FTIR) - Scanning
Electron Microscopy (SEM)
- and Brunner–Emmett–Teller (BET). Batch
experimental trails were operated to determine the optimum adsorpant
material
- its optimum dose - as well as the other operational parameters - such as solution pH - inoculation concentration - and their interactions
during COD removal and Biogas production were investigated. The
maximum removal of COD (99.63%) and the biogas production (5.16 mL
biogas/mg COD removed) of Rice Straw Biochar (RSB) were at pH value
- biochar dose - and buffalo sludge dose concentration were equal to 8 - 2 g/L -
IV
and 0%
- respectively. Commercial Activated Carbon (AC) has achieved
maximum removal of COD (95.55%)
- and the biogas production (6.08 mL
biogas/mg COD removed) at pH
- biochar dose - and buffalo sludge dose
concentration were equal to 5
- 2 g/L - and 0% - respectively. The maximum
removal of COD (98.88%) and the biogas production (4.08 mL biogas/mg
COD removed) of Phragmites australis Biochar (PaB) were at pH
- biochar dose - and buffalo sludge dose concentration were equal to 5 - 2 g/L - and 0% - respectively. These results revealed that rice straw biochar can be
used as an effective and low-cost adsorbent to remove COD from
wastewater. The surface properties of rice straw biochar substantially
affect its capability of removing metal ions from wastewater
- and fourier
transform infrared spectroscopy (FTIR) spectroscopy is a great tool to
observe this surface composition. Two identical pilot-scale models
simulating “Up-flow Anaerobic Sludge Blanket” reactors (UASBs) were
built and operated continuously within the work frame of the present work
to investigate its performance and efficiency in treating buffalo
wastewater treatment. The effect of supporting media on the UASB
efficiency will be also invistgated at the field. The two UASB reactors
were operated under the same operational conditions and scenario
- the
reators operated at HRT equals 4hr and ambiaint temperature. Both R4
(conventional UASB) and R3 (modified UASB) were fed by settleled
wastewater . The condutive media was not added to R3 at the beigning. After the start-up
- the modified UASB reactor (R3) was inoculated with
rice straw biochar through an inclined pipe. Samples were collected and
analyzed periodically twice weekly. The results indicated that; For the
conventional reactor
- the maximum removal efficiency of COD - TSS - TDS - Color - and Turbidity was 79.89% - 74.04% - 80.11% - 72.72% - and
75.70%
- respectively. Cumulative biogas production reached 0.028 mL

Thesis 2022.
First and foremost - I thank Allah - for all his blessings and for giving me this opportunity to carry on this work - helping me and for giving me the strength and faith to accomplish.
I would like to express my sincere gratitude and appreciation to my supervisors
- whose guidance and support allowed the accomplishment of this research. I really have been fortunate to be able to benefit from their experience and remarkable influence during through the whole work.
I owe my deepest recognition and sincere gratitude to Prof. Kamal M. Ismail for his invaluable guidance
- precious advice - detailed and constructive comments - his generous - time and effort throughout all the stages of conducting this thesis.
Special and deepest thanks go to Prof. Waleed H.Elkamash and Assoc. Prof. Azza Hassan Moubark
- who helped me to complete this thesis as well as they gave me the tool that helps me in my application - thanks for their extensive discussions - detailed review and continuous encouragement.
A lot of thanks to my brothers Assoc. Prof. Eyad Oda and Assoc. Prof. Ahmed Salem for their guides to finalizes my research in suitable duration and helping me to remove all obstructions met me during the research trip.
Last
- but not least - I deeply thank my Family for giving hope - listening and supporting - without their encouragement and constant guidance I could not have finished this thesis - First and foremost - I thank Allah - for all his blessings and for giving me this opportunity to carry on this work - helping me and for giving me the strength and faith to accomplish.
I would like to express my sincere gratitude and appreciation to my supervisors
- whose guidance and support allowed the accomplishment of this research. I really have been fortunate to be able to benefit from their experience and remarkable influence during through the whole work.
I owe my deepest recognition and sincere gratitude to Prof. Kamal M. Ismail for his invaluable guidance
- precious advice - detailed and constructive comments - his generous - time and effort throughout all the stages of conducting this thesis.
Special and deepest thanks go to Prof. Waleed H.Elkamash and Assoc. Prof. Azza Hassan Moubark
- who helped me to complete this thesis as well as they gave me the tool that helps me in my application - thanks for their extensive discussions - detailed review and continuous encouragement.
A lot of thanks to my brothers Assoc. Prof. Eyad Oda and Assoc. Prof. Ahmed Salem for their guides to finalizes my research in suitable duration and helping me to remove all obstructions met me during the research trip.
Last
- but not least - I deeply thank my Family for giving hope - listening and supporting - without their encouragement and constant guidance I could not have finished this thesis

Book 2002
ISBN: 0071121676


من 226
 







Powered by Future Library Software.All rights reserved © CITC - Mansoura University. Sponsored by Mansoura University Privacy Policy