D-NUCLEI ON FRAMES

الأنوية - D على الهياكل

M.E.Abd El-Monsef *; E. F. Lashein **; A. I. El-Maghrabi ***

- *) Department of Mathematics , Faculty of Science , Tanta University ,Tanta , Egypt .
- **) Department of Mathematics and Physics , Faculty of Engineering ,Tanta University, Tanta , Egypt .
- ^^*) Department of Mathematics , Faculty of Education , Tanta University , Kafr El-Sheikh , Egypt .

الملخص العربي

الهدف من هذا البحث هو تقديم الأنوية من النوع — D ودراسة بعض من خواصهـا. وأيضاً قدمنا تعريف بعض من مسلمات الإنفصال — D وكذلك بعـض من الاحكام — D بإستخدام الانوية — D. وبالاضافة الى ذلك ناقشنا صورة بعض من مسلمات الانفصال تحـت تأثير التشاكل.

ABSTRACT:

The purpose of this paper is to introduce D-nuclei and to study some of its properties. Also, we give the definitions of some D-separation axioms and D-compactness for frames by using D-nuclei. Further, we discuss the image of these axioms under homomorphisms.

1 - INTRODUCTION:

A frame [5] is defined to be a complete lattice L which satisfies the infinite distributive law, that is, $x \wedge \bigvee_{i \in I} x_i = \bigvee_{i \in I} (x \wedge x_i)$, for every $x \in L$ and every subset $\{x_i\}_{i \in I}$ of L. We shall call a map from one frame to another a frame homomorphism [6], if it preserves arbitrary joins and finite meets. If x is an element of a frame L, then $x^* = \bigvee\{y \in L: y \wedge x = 0\}$ is called the pseudocomplement [3] of x.

In a lattice L, b covers a (a is covered by b) (in notation, b > a(a < b)) [4] if a < b and there is no exist x such that a < x < b.

A subframe [5] of a frame L is simply a subset of L which is closed under A and V.

Theorem 1.1 [1]:

Under a frame homomorphism (resp. isomorphism) the image (resp. the inverse image) of frame is also a frame.

2 - THE INTERIOR AND THE CLOSURE OF D- NUCLEI:

In what follows, we give the definition of the interior (resp.the closure, dense, nowhere dense) D-nucleus. Also, we study some of its properties.

Definition 2.1:

A D-nucleus on a frame L is defined as a map $\eta: L \longrightarrow L$ satisfying: (i) $a \ge \eta(a)$,

(ii)
$$\eta(a) = \eta(\eta(a))$$
,

(iii)
$$\eta(a \lor b) = \eta(a) \lor \eta(b)$$
, for all a, b $\in L$.

We denote by $\mathcal{D}(L)$ the lattice of all D-nuclei on a frame L and we denote the bottom and the top elements of $\mathfrak{D}(L)$ by Δ , ∇ respectively.

Example 2.1:

Let L be a frame and L =
$$\{0, a, b, 1\}$$
.

Then η_0 is a D-nucleus but η is not a

D-nucleus. Since,

Example 2.2:

A chain $o \prec a \prec b \prec c \prec ... \prec 1$ on a closed interval [0, 1] forms a frame, then the lattice of all D-nuclei on a frame L is $\mathcal{D}(L) = \{ \eta_i : i = 0, a, b, c, ..., 1 \}$, where $\eta_i(x) = \begin{cases} i, & x \geq i \\ x, & x < i \end{cases}$, for $i, x \in L$.

Remark 2.1:

The concept of a D-nucleus and the concept of a nucleus [6] are independent as shown in Example 2.1.

Definition 2.2:

Let a be an element of L. Then the maps h_a , $g_a:L\longrightarrow L$ with $h_a(x)=a\wedge x$, $g_a(x)=a\to x$, for all $x\in L$ are D-nuclei which for topologies correspond to open, closed subspace respectively. D-nuclei of this form are therefore said to be closed, open D-nucleus respectively. A D-nucleus which is both open and closed is said to be a clopen. We denote by $O\mathcal{S}$ (L) the lattice of open D-nuclei, by $C\mathcal{S}$ (L) the lattice of clopen D-nuclei.

Example 2.3:

In Example 2.2, for each $i \in L$, the frame map $g_i(x) = \begin{cases} 0 & , i \neq 0 \\ x & , i = 0 \end{cases}$ gives the class $O(\mathcal{D})(L) = \{g_0, g_1 = g_a = g_b = g_c = ...\}$, and every D-nucleus of L correspond to a unique closed D-nucleus.

Now , we discuss the concepts of the interior and the closure of a D-nucleus $\,\eta$ which will be denoted by $\,\eta^o\,,\eta^-$ respectively .

Definition 2.3:

For $\eta \in \mathcal{D}$ (L), we define the interior and the closure of η as :

(ii)
$$\eta^- = \wedge \{h : h \in C \mathcal{L}(L), \eta \leq h \}$$
.

Lemma 2.1:

Let L be a frame and $\eta, g \in \mathcal{D}(L)$. Then

- (i) If $\eta \le g$, then $\eta^{\circ} \le g^{\circ}$,
- (ii) η is an open D-nucleus iff $\eta = \eta^{\circ}$,
- (iii) $(\eta \wedge g)^o = \eta^o \wedge g^o$.

Proof:

- (i) Since $\eta^o = \vee \{q: q \in O \mathcal{S} (L) , q \leq \eta \}$, then $q \leq \eta$, q is an open D-nucleus but $\eta \leq g$ implies that $\eta^o \leq g^o$.
- (ii) The necessity . Let η be an open D-nucleus and $\eta \le \eta$. Then $\eta = \eta^o$.

The sufficiency. Clearly η^o is an open D-nucleus but $\eta=\eta^o$. Hence η is an open D-nucleus .

(iii) Firstly. Since $\eta \wedge g \leq \eta$, $\eta \wedge g \leq g$, then $(\eta \wedge g)^o \leq \eta^o \wedge g^o$ (1) Secondly. Since $\eta^o \leq \eta, g^o \leq g$ implies that $\eta^o \wedge g^o \leq \eta \wedge g$, hence $\eta^o \wedge g^o \leq (\eta \wedge g)^o$(2). Therefore $(\eta \wedge g)^o = \eta^o \wedge g^o$.

Lemma 2.2:

If L is a frame and $\eta, h \in \mathcal{D}(L)$, then

- (i) Let $\eta \le h$. Then $\eta^- \le h^-$
- (ii) η is a closed D-nucleus iff $\eta = \eta^-$.
- $(iii)(\eta \vee h)^- = \eta^- \vee h^-.$

Proof:

Obvious

In the following, we introduce the definition of a dense (resp, a nowhere dense) D-nucleus of L.

Definition 2.4:

A D-nucleus η of a frame L is called dense (resp. nowhere dense) if $\eta^- = \nabla (\text{resp. } \overline{\eta}^\circ = \Delta) \ .$

We denote by $D \underline{\mathcal{O}}(L)$ the set of dense D-nuclei, by $N \underline{\mathcal{O}}(L)$ the set of nowhere dense D-nuclei and by η^c the complement of η .

Example 2.4:

In Example 2.2 , η_1 is a dense D-nucleus and η_o is a nowhere dense D-nucleus .

Lemma 2.3:

If $\,\eta$ is an open and a dense D-nucleus of L, then the complement of η is a nowhere dense D-nucleus of L .

Proof:

Since η is an open and a dense D-nucleus of $\,L$, then $\,\eta^{co}=\Delta$ and hence $\,\eta^c\,$ is a nowhere dense D-nucleus .

Remark 2.2:

The complement of a nowhere dense D-nucleus of L is dense but the converse is not true as shown in Example 2.4.

Lemma 2.4:

Let be a frame, $g \in O'\mathcal{B}(L)$ and $\eta \in \mathcal{B}(L)$. Then $g \wedge \eta = g \wedge \overline{\eta}$

Proof:

Let $x \in \overline{g \wedge \eta}$. Then there exists an open D-nucleus q containing x such that $q \wedge (g \wedge \eta) \neq \Delta$ implies that $x \in \eta^-$, and hence $x \in g \wedge \eta^-$. Then $\overline{g \wedge \eta} \leq g \wedge \eta^-$... (1).

Conversely. Let $x \in g \land \eta^-$. Then $x \in g$ and $x \in \eta^-$, since $x \in \eta^-$, then there exists an open D-nucleus q containing x such that $q \land \eta \neq \Delta$, hence $q \land (g \land \eta) \neq \Delta$. Thus $x \in g \land \eta$. Therefore $g \land \eta^- \leq g \land \eta$...(2). Then from (1), (2) we have the result.

Theorem 2.1:

Let $\,L\,$ be a $\,$ frame and $\,\eta\,$ be a D-nucleus of $\,L\,$. Then the following statements are equivalent :

- (i) η is a dense D-nucleus of L.
- (ii) If h is a closed D-nucleus of L, $\eta \le h$ implies that $h = \nabla$.

- (i) \Rightarrow (ii). Let η be a dense D-nucleus , h be a closed D-nucleus of L and $\eta \leq h$. Then $h = \nabla$.
- (ii) \Rightarrow (i) . Since η^- is a closed D-nucleus and $\eta \leq \eta^-$, then η is a dense D-nucleus of L .

Theorem 2.2:

Let L_1 , L_2 be two frames. Then the following statements are equivalent:

- (i) L_1 and L_2 have the same nowhere dense D-nuclei.
- (ii) η is an open and a dense D-nucleus of L_1 iff $~\eta$ is an open and dense D-nucleus of $~L_2~$.

Proof:

- (i) \Rightarrow (ii). Let η be an open and a dense D-nucleus of L_1 . Then η^c is a nowhere dense D-nucleus of L_1 (by Lemma 2.3), but L_1 , L_2 have the same nowhere dense D-nuclei . Therefore η is an open and a dense D-nucleus of L_2 . The proof of the converse is similar .
- (ii) \Rightarrow (i). Let η be a nowhere dense D-nucleus of L_1 . Then η^c is a dense D-nucleus of L_1 . Thus η^c is an open and a dense D-nucleus of L_2 , hence η is a nowhere dense D-nucleus of L_2 . Therefore,

$$N \mathcal{Q}(L_1) \le N \mathcal{Q}(L_2)...(1).$$

Also , we have $N \underline{\mathcal{O}}(L_2) \leq N \underline{\mathcal{O}}(L_1)...(2)$. Then from (1) , (2) it follows that L_1 , L_2 have the same nowhere dense D-nuclei .

Theorem 2.3:

Let L_1 , L_2 be two frames have the same dense D-nuclei. Then L_1 , L_2 have the same nowhere dense D-nuclei.

Let η be a nowhere dense D-nucleus of L_1 and L_1 , L_2 have the same dense D-nuclei. Then η is a nowhere dense D-nucleus of L_2 . We have $N \not S(L_1) \le N \not S(L_2)...(1)$. Also, we have $N \not S(L_2) \le N \not S(L_1)...(2)$. Then from (1), (2) we have the result.

In the following we introduce the notion of D-submaximal and D-extremely disconnected frame.

Definition 2.5:

A frame L is said to be:

- (i) D-submaximal if all dense D-nuclei are open.
- (ii) D-extremely disconnected if the closure of every open D-nuclei on L is open .

Example 2.5:

A frame in Example 2.2 is D-submaximal and also D-extremely disconnected.

Lemma 2.5:

Let L be a frame . Then the following conditions are equivalents :

- (i) L is D-extremely disconnected.
- (ii) If $g, q \in O \mathcal{D}(L)$, $g \wedge q = \Delta$, then $g^- \wedge q^- = \Delta$.

Proof:

- (i)⇒(ii).It is immediate from definition of D-extremely disconnected frame.
- (ii) \Rightarrow (i) . Let g be an open D-nucleus of L. Then $g \wedge g^{-c} = \Delta$. Hence $g^{-c} \leq g^{-c}$, therefore g^{-c} is an open D-nucleus of L. Then L is D-extremely disconnected.

Theorem 2.4:

Let L_1, L_2 be two D-submaximal frames. Then L_1, L_2 have the same dense D-nuclei iff L_1, L_2 have the same nowhere dense D-nuclei.

The necessity. It is immediate from Theorem 2.3.

The sufficiency . Let η be a dense D-nucleus of L_1 . Since L_1 is D-submaximal,then η^c is a nowhere dense D-nucleus of L_1 (by Lemma 2.3).But L_1, L_2 have the same nowhere dense D-nuclei ,then η is a dense D-nucleus of L_2 . Therefore $D \not D (L_1) \leq D \not D (L_2) \ldots$ (1) . Similarly, we have $D \not D (L_2) \leq D \not D (L_1) \ldots$ (2) . Hence from (1),(2) L_1, L_2 have the same dense D-nuclei .

3 - SOME D-SEPARATION AXIOMS AND D-COMPACTNESS FOR FRAMES

In the following, we introduce some types of D-separation axioms and D-compactness on frames by using D-nuclei. Also we give some properties of these axioms on frames. Furthermore, we discuss the image of D-separation axioms and D-compact frame under homomorphism.

Definition 3.1:

A frame L is called:

- (i) D-T₁ if, for every two open D-nuclei η_1 , η_2 such that $\eta_1(x) \le \eta_2(x)$, for $x \in L$ implies that $\eta_1 = \eta_2$.
- (ii) D-T₂ if, for every two open D-nuclei η_1, η_2 such that $\eta_1(x) \vee \eta_2(y) = 1$, whenever $x \vee y = 1$ in L implies that $\eta_1 = \eta_2$.
- (iii) D-regular if, for every $x \in L, x = \wedge \{u \in L : u^* \wedge x = 0\}$.
- (iv) D-normal if, for every $x,y \in L$ satisfying $x \wedge y = 0$, there exists $u \in L$ such that $x \wedge u = y \wedge u^* = 0$.

Lemma 3.1:

- (i) Every D-T2 frame is D-T1.
- (ii) Every D- regular frame is D-T2.

Proof:

(i) It is immediate from Definition of $D-T_2$ and $D-T_1$ frame.

(ii) Suppose that L is a D-regular frame; η_1, η_2 are open D-nuclei of L such that $\eta_1(x)\vee\eta_2(y)=1$, whenever $x\vee y=1$, then for, $x\in L$, $x=\wedge\{u\in L: u^*\wedge x=0\}$. Now, $u^*\wedge x=0$ implies that $\eta_1(u^*)\wedge\eta_2(x)=0$, then $\eta_1(u^*)\leq (\eta_2(x))^*$ implies that $\eta_1(x)\leq \eta_2(x)...(1)$. Similarly, we have $\eta_2(x)\leq \eta_1(x)...(2)$. Then from (1), (2) we have $\eta_1=\eta_2$. Therefore L is $D-T_2$.

Example 3.1:

Let L be a frame and $L = \{0,a,b,1\}$. Then L is a D-regular frame. Hence L is a D-T₂ frame and therefore L is a D-T₁ frame.

Corollary 3.1:

Let L , f(L) be two frames , o_L be an infimum of L and $o_{f(L)}$ be an infimum of , f(L) . Then $f(o_L) = o_{f(L)}$.

Proof:

For $a \in L$, then $f(a) \in f(L)$,

 $f(o_L) = f(a \wedge o_L)$, since f is homomorphism

$$= f(a) \wedge f(o_L)$$
, but $f(a) \in f(L)$

$$= f(a) \wedge o_{f(L)}$$
, then

$$f(a) \wedge f(o_L) = f(a) \wedge o_{f(L)} \dots$$
 (1)

Also, $f(a) = f(a \lor o_L)$, for $a \in L$; then

$$f(a) \lor f(o_L) = f(a) \lor o_{f(L)}$$
 (2)

Then from (1), (2) we have $f(o_L) = o_{f(L)}$.

Lemma 3.2:

Let $f: L \longrightarrow L'$ be a homomorphic mapping from D-T_i - frame L onto a frame L'. Then L' is D-T_i; i = 1, 2.

We prove the theorem only for a D-T_I-frame . For every $x \in L'$, there exists $y \in L$ such that $f^{-1}(x) = y$. Let g_1, g_2 be open D-nuclei of L' with $g_1(x) \leq g_2(x)$, for $x \in L'$. Then there exist q_1, q_2 open D-nuclei of L such that $q_1 = f^{-1}g_1$, $q_2 = f^{-1}g_2$. Since L is a D-T_I - frame , then $g_1 = g_2$. Therefore L' is D-T_I.

Theorem 3.1:

If, $f: L \longrightarrow L'$ is homomorphism from D-regular (resp.

D-normal) frame L onto frame L', then L' is D-regular (resp.D-normal).

Proof:

We prove the theorem for a D-normal frame. For every $x,y\in L'$ satisfying $x\wedge y=0$, there exist $z,w\in L$ such that $z=f^{-1}(x),\ w=f^{-1}(y)$ and $z\wedge w=0$. Since L is D-normal, then there exists an open D-nucleus u of L such that $z\wedge u=w\wedge u^*=o_L$. Hence $x\wedge u'=y\wedge u'^*=o_{L'}$; $u'\in L'$ (by Corollary 3.1). Therefore L' is a D-normal frame.

Finally, we introduce the definition of a D-compact frame.

Definition 3.2:

A frame L is called D-compact if for every family of open D-nuclei of L $\{G_i: i \in I\}$ for which $\bigvee_{i \in I} G_i = \nabla$, has a finite subfamily $\{G_{i1}, G_{i2}, \ldots, G_{in}\}$ of L for which $\bigvee_{k=1}^n G_{ik} = \nabla$.

Theorem 3.2:

Under a homomorphic mapping ,the image of a D-compact frame is also D-compact .

Proof:

Let $f:L \longrightarrow K$ be homomorphism from a D-compact frame L onto a frame K and let $\{H_i: i \in I\}$ be a family of open D-nuclei of, f(L) for which $\bigvee_{i \in I} H_i = \nabla_{f(L)}$. Then there exists $G_i \in L$ such that $f(G_i) = H_i$. Since f_i is homomorphism, then $\{G_i: i \in I\}$ is a family of open D-nuclei of

L for which $\bigvee_{i \in I} G_i = \bigvee_{i \in I} \bigcup_{j \in I} Since L$ is D-compact frame, then there exists a Mansoura Engineering Journal, (MEJ), Vol. 27, No. 2, June 2002. finite subfamily $\{H_{i1}, H_{i2}, ..., H_{in}\}$ of , f(L) for which $\sum_{k=1}^{n} H_{ik} = \nabla_{f}(L)$. If L_1, L_2 are two D-submaximal frames have the same dense Hence f(L) is D-compact. D-nuclei and L_1 is D-compact, then L_2 is a D-compact frame . Theorem 3.3: Let $\{G_i:i\in I\}$ be a family of dense D-nuclei of L_2 for which $V = V \cdot since L_2$ is D-submaximal, then $\{G_i : i \in I\}$ is a family of $G_i = V \cdot since L_2$ is D-submaximal. open D-nuclei of L_2 for which $G_i = \nabla$, but L_1, L_2 have the same Proof: dense D-nuclei and L_1 is D-compact, then there exists a finite subfamily $\{G_{i1}, G_{i2}, ..., G_{in}\}$ of open D-nuclei of L_2 for which $\bigvee_{k=1}^{n} G_{ik} = \nabla$. Let $f:L_1 \longrightarrow L_2$ be a homomorphism mapping from a D-compact Therefore L2 is a D-compact frame. frame L_1 onto a frame L_2 . Then L_2 is a D-compact frame. Proposition 3.1: Immediate from Theorems 3.4, 3.5. $f:L_1 \to L_2$ be an isomorphism from a frame L. Proof: D-compact frame L_2 , then L_1 is a D-compact frame . Proposition 3.2: Proof: We would like to thank the refree for value Obvious. ACKNOWLEDGMENT: suggestions

- [1] Abd El-Monsef, M.E.; Abo khadra, A.A.; El-Maghrabi, A.I.: Applications on near open nuclei of frames, J. Egypt. Math. Soc.
- [2] Abd El-Monsef, M.E.; Abo khadra, A.A.; Taher, B.M.; El-Maghrabi, A.I.: Equivalent frames, J. Egypt. Math. Soc. Vol. 7
- [3] Dowker, C.H.; Strauss, D.P.: T_1 and T_2 axioms for frames, London
- [4] Grätzer, G.: Lattice theory, Winnipeg, University of Manitoba,
- [5] Johnstone, P.T.: Stone spaces, Cambridge Studies in advanced Math.
- [6] Paseka, J., Sekanina, P.: A note on extremely disconnected frames, Acta Univ Carolinae Math et Physica, 13 (1990), no