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Abstract- The simultaneous development of both hydrodynamic and
thermal boundary layers 1is theoretically examined in case of
laminar forced-convection in entrance region for flow between two
parallel plates. Thls is done by the applicatlon of the local
similaritly solution-method. According to this method, momentum and
energy equations of the problem are transferred to ordinary
differential equations, which are solved numerically by Lhe Runge-
Kutta method accompanled with the Shogoting method of Dboundary
valve problems.

The dimensionless temperature and heat transfer coefficient
are sultably deflned so that Lhe oblalned Nusselt number ls valld
in both cases of constant and equal wall—- temperatures ;and in the
same time in case of constant and unequal wall- temperatures. The
values of Nusselt number arece calculated at different positions
along the passage for the value of Prandtl number of 0.5, 1.0&
2.0. This range of Prandtl number satisfies almost the important
gases in the engineering applications.

1. INTRODUCTION

In tbhe design of heal exchangers, the prediction of the heat
Ltransfer coefficient with a good accuracy is a very important
factor. At the inlet of the heat exchangers, both hydrodynamic and
thermal boundary layers develop simulianeously. Therefore lamlnar
forced convectlion solutlons 1n comblned entrance reglon represent
an lmportant c}ass of solutlons for heat exchangers. Kakac and
Yener {11 made a good survey of the previous studles of laminar
forced convection in various duct geometries under constant wall
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temperature and constant wall heat flux boundary conditlons, for
Newtonian and constant physical properties flulds. One of the
simple geometries for the mathematical treatment, 1s the [flow
between two parallel plates.

Many different methods have been developed to solve the
governing equations of the problem or heat transfer in
simultaneous development of velocity and temperature profiles 1in
the entance reglion. Sparrow [2]1 is the [first investigator who
studled the slmultaneous development of the velocity and
temperature profiles for parallel plate channels. Rohsenow and
Chol [3] have graphically represented Sparrow’s results for mean
Nusselt numbers for Prandtl number of values of
0.0,0.01{,0.72,1{,2,10,50 and = . An approximate serles solution for
the combined entrance region under constant wall temperature
boundary conditions was obtalned by Stephan [4]. Also, an analysis
of the simultaneously developing region was made by [finlte
difference method (5,6]). liwang and Fan [5] reported Nusselt number
for Prandtl numbers in range of 0.01 to 50, for constant wali-
temperature and constant heat flux boundary conditions. Mercer [6]
proposed an emplrical relatlon for mean Nusseit number under
constant wall temperature boundary condltions. Miller oand Lundberg
(7] extended the work of [5,6,71 for boundary conditlons of
constant but unequal wall temperatures. They used Bodol’s veloclty
distrlbutlon [8]). Their results have been presented fror Prandtl
number range from 0.5 to 10. The present problem was also solved
by the integral method {9,10,1i). Naito (9] obtained the solution
for velocity entrance region by Karman =~ Pohlhausen integral
method. Subsequently he obtained the solution for the combined
entrance region under the constant heat fiux boundary condition.
Nusselt numbers of this work are in good agreement with the
results obtalned by Siegel and Sparrow (10). Bhatti and Savery
(11]) made & graphical representation of Nusselt number for Prandtl
numbers ranging from 0.01 to 10.00.

Similar solution for laminar forced convectlon heat transfer
from single plate was obtalned by Lin and Lln [12). Their
simllarlty soiution provides very accurate solutions for laminar
forced convection heat transfer from either an isothermal surface
or a uniform—- flux boundary to a fluid of any Prandtl number. The
purpose of the present work ls to make a local similarity solution
for laminar forced convectlon heat transfer in entrance reglon for
flow between two parallel plates. The local similarity solution of
boundary layer equations was flrst derlved by Sparrow, Quack and
Boerner [13]). In present work the achleved 1local similarlty
solution ls valld for boundary condltlons of constant and equal
wall temperatures and also for the boundary conditlon of constant
and unequal wall temperatures.
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2. BOUNDARY-LAYER EQUATIONS

Consjider the jaminar boundary-layer flow between twc parallel
plates as shown in Fig. (1). The veloclty of approach, temperature
of the fluid at the inlet and Lhe distance between Lhe Lwo plales
are denoted as u., T° and b, respectively. The velocity at the
axis of similarity is denoted by o x - The case of constant
wall-temperaturesc T1,T2) will be studicd. The wall tLemperatures

can be egqual or unequal. Constant fluid properties are assumed.

The g¢governing equatlons can be wrltten in Cartesian
co-ordinate x, y as follows :

dy v o
5 =0, o
du Su _ ,, Jfu

Usk T Yoy TV &2 o &))
ar a _ o 2T

u g tv oy a e 3>

where u and v are Lhe velocity components in x-= and y~dlrectlons,
respectively, T is the temperature of fluid, » the kinematic
viscosity and a the thermal diffusivlty. In the momentum equat.lon,
the effect of pressure varlalion in x~direction is neglected. The
value of the velocliy at the axis of similarity (uo’x), at  any
value of X must salisfy the continuity equation in integral fornm,

which statles :
b2

udy =X u b . W
L) y 2 [o]

Equations (1)>—(3) form a sysStem of equations ror three unkowns u,

v and T. This system has to satisfy the following boupndary
condltilons :

u=v=0, T =T, at y =0 ;
w=v=0, T, =T, at y = s 5>
u = “o,x at y 3 b2 .

To express the governing equations in dimensionless form, one
introduces new independent variables ¥, n as follows :

iR - i
= —2._ = = ——o_
e/ e ey o

Furthermore, a dimensionless stream function and a dlmensionless
temperature are defined according to the following relatlons :

ree, m = w(x,y)/_/'u0 v X R 7>

ey, m = 2(T-T> ~ (L+¢<T -T)> ,

¢ = (T,-T > 7 (T -T > . 8>
where w(X,y) is the stream function , which 1s Introduced to

satisfy the continulty equation (1), The dimenslonless temperature
(6 and the wall temperature ratio (¢d) are defined In such a
manner Lo satisfy the condition of constant and equal wall
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temperatures, and also Lhe case of constant and unequal wall
Lemperature. ln first case ¢ has the value of one and on other
hand ,in second case the value of ¢ could take a value 1in the
range of nil to one. Substitution of equtions (863)-(8) 1into
equations (1)=(3) and (5) leads to the following dimenslonless
form of the momentum and energy equations C primes denoling
differentiation with respect to 5 >

l\lll * % '\ r" = 0 , (9)

—.%; 6 +1re =0 , 10>
with the boundary conditions :

far =0 , o = '1'%3 at 7 = 0 ; (113>

r =0 o = —2¢_ at = ; (11bd

’ 2 1+¢ n ™
U x

r° = _ﬁ; at n = N » , 11c)

where nband N,,, denote the value of the dimensionless

independent variabie n corresponding to the total distance between
the plates (b> and to the half of this distance (bs2),
respectively. According Lo the local similarity solution method
[13), the derivatives of the varlables f and 9 with respect to ¥
In equatlons (9>-C10> are ignored ,and ¥ (s dealt vith as a
parameter, shich 1is varied according to the value of x. Moreover,
according to the definitions of ¥,7n and f [equatlons(6>-(7>), and
equation (43, the proper value of (&, > must satisfy the
following eguatjon :

My, 2

Nor2
Ny,2 = oJ r" dn . a2

Equations 9> -11> represent a system of ordinary
differential equations with their boundary conditions, which must,
be satisfied. Because of the similarity of the velocity profile
about Lhe similarlty-axis of the passage, it 1s convenlent ¢to
solve the momentum equation for the half of flow field J{from y=0
Lo y=bs2). The value of 7n has a fixed value of nil at the
boundary, where y=0. But from equation (8>, the value of n at the
other boundary (at y=b/2) depends upon the value of x and, in turn,
upon the vaiue of ¥, as it is clear from the following equation :

- b u
_D/EQ =1 _. 0 L
M2 = 2 X V 2 v r 135

3. NUHERICAL PROCEDURE

According to the 1local similarity-method (131, the system of
equations (9>-C11) 1s saolved for dlfferent values of the parameter
Z and hence for dirfferent values of n,- First, the momentun
equation (9) and its boundary conditions [equations (11ad-(11c)]
is solved,numerlcalily, by the Runge-Kutta method of ordinary
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differential equations. The value of ' at Fy 2 1s justlfied ta
the propei value, using the shooting method of the boundary value
problems accompanied with the Newton—Raphson me thod of
nan—algebric equations. This proper value of ' produces a
veloclty proflile, whlch satisfles equation <(12). Knowing the
veloclty proflle, one can proceed to solve the energy egquation
(10> and 1ts boundary conditlons [equations (11ad-C(11b)]. With the
same numerical pracedure used to solve the momentum equatlion, the
energy equatlon ls solved. The solution of It consists of trwo
parts, the frist ls the solutlon of the energy equatlon from the
boundary, where n=0 and the second staris from the other boundary,
where n=n,. The two parts of solution is properly coupled at the
posltion, where Lhe temperature of Lhe fluld has the minlmum value
C6=0>. A constant step size An is taken as 0.1. The highest value
af n., used to obtain the present results, is taken as 50 and
hence the corresponding value of ¥-Re_ has La be 0.02 (smallest
value of Z). The value of the parameter ¢ is lncreased by 2a
variable lanterval AL corresponding to a constant interval Anb=— 2.

vhen the velocity and temperature fields have been obtained
the lacal Nusselt number Nux ,and the local coefflcient of
friction C{ can be determined accordlng to the followlng
definitlons :

h
Nux = ——E! R CI =x_ 7 p u; R 14>
vhere, the shear stress at the wall 7, the 1local heat transfer
coefflclent h and the thermal coductlvity Kk are determlned
according to the followlng equatlons

ou

T, =pv By )y=O R asd
T + T
o iz _
q, h ¢ 5 T
= a1 ar
=% (| ¢ By )y:O | + (| ¢ Dy )y=b } ) . A

Introducing dlmenslonless varlables In equatlons (14)>-C146), one
obtains the following expressions of local Nusselt number and
local coefficient of friction :

Nu /_/I-te' = (]60°¢0, 2| + [&<Cn 8] )/ A -6) , U

c, ke, < f¢e,05 18>

where Rex denotes the local Reynolds number (uox/v) and em is the
average dlmensionless temperature.

4. RESULTS AND DISCUSSION
The numerical obtalned results are represented in the

following frigures. Flg. (2> represents the velocity profile at
different values of 1, and hence at different values of & At
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n, =10 (1.§E:/Reb = 0.i1> the profile takes a shape near that of the
fully developed flow (parabolic profile). Flgures (3)-(4> are the
dimenslonless temperature proflle for the cases of constant and
equal wall-temperatures ¢(¢p = 41.0), and constant and unequal
wall-temperatures (¢ = 0.25). Fig. (3) is drawn for Pr = 2.0 at
values of ny= 40, 30, 20 & 10, or in another word at values of

1_EE:/REb = 0,025, 0.033, 0.05% 0.1. Flg. (4) shows the developing
of temperature profile in case of ¢ = 0.25 (6t=1.6, 62=0.4). The
dimensionless bulk Lemperature (em) along the passage alL different
Prandtl number 1s given in Fig. (S>. Local Nusselt number
(Nu /7Re_)> against Lhe dimensionless distance (vRe ~Re ) along the
passage for Pr =2.0, 1.0, 0.5 1Is glven 1in Flg. <6>. For the
purpose of comparison wlth the results of prevlious
investigatlons, the local Nusselt number ( Nub = hb 7~ k ) |1s

represented against dimensionless distance x" (¢ x™ =(x/b)/(RexPr))
in Fig. (7). It is clear that, the value of Nusselt npumber (Nub)
takes an asymptotic value of about twelve for all values of
Prandtl numbers. This asymptotic value is lower than that obtained
In literatures (Nub/2= 7.504). The reason of this devlation seems
to be due to the negligence of the effect of the pressure
variation along the passage. The numerical results of Nul and Nub
are tabulated in tables (1>-(2). Fig. (8) shows maximum velocily,
local Nusselt number and coeflflcient of friction for Prandtl
number of one agalnst the dimensionless dlstance VEE:/Reb.

5. CONCLUSION

The present work proves that, the local similarity solution
method is suitable to solve Lhe governing equations of the [flow
not only over a single surface, but also for flow thraugh
conduits,the simplest shape of them is the flow between two
parallel plates. The computer program based upon the present
derived solutlon is self-storting one. More tLhan the boundary
condltlons of the problem, no further informatlons are requlred to
carry out the calculatlons al any position along the passage. The
obtained Nusselt number, ln present study, is valid for case of
constant and equal wall-temperatures, and at the same time for the
case of constant and unequal wall-temperatures. The devlation of
the numerical results from that of previous works 1is, probably,
due to the negligence of the effect of pressure varlations inside
the passage. Hence, 1t is proposed to make more studies to examine
the correctness of Lhis suggested reason.

4. NOMENCLATURE

b the normal distance between the Lwo plates
Cr coefficient of friction, T /Py,

r dimensionless stream function, w/v{u_v x)
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h local heat transfer coefficlent, defined through eq. (16>

k thermal conductivity

Nu loca) Nusselt number bLased upon b, hbrk

Nu local Nusselt number, hxs/k

Pr Prandtl number, v“/a

q, heat flux at the wall

Re local Reynolds number based upon b, u_b/v

Re loca)l Reynolds number, u_x/v

T temperature

T° temperature of fluld at the inlet cross—sectlon

TL,T2 temperature of lower and upper wall ,respectively

Tm bluk temperature

T, wall-temperature

u velocity component in x-direction

u_ the velocity at inlet cross—sectlon of the passage

u, the velocity at the axis of similarity

v veloclty component in y-direct.ion

X co-ordlnate along Lhe lower wall of the passage

x- dimensionless distance, (x/b)/(RebPr)

y co~grdinate normal to the lower wall of passage

a thermal dIffusiviLy, pcp/k

n dinensionless independent varlable, y.vfﬁ;7§§3

n, the value of 3 at the upper wall, Reb/Yﬁg:

LI the value of n at the half of the distance between the

two walls

¢ dimensionless independent variable, 1?5-§57§

¢ wall—-temperatures ratlo, (Tl—Ta)/(T‘—Ta)

v kinematic viscosity

Ie} density

(5] dimensionless temperature, 2 (T-T > ~ (1+¢)(T1—Ta)

T wall shear stress,. pv (gg)y=0

7] stream functlon
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Fig. ( 1) Schaatic descripticn of the flow between
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Fig. (2) The development of the velocity profile of laminar flow
in the entrance region of the passage.
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Fig. {(3) The development of the termperature profile in the thermci
entrance region of the passoge in case of censtant and
equal wall temperatures .
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Fig. (4) The development of temperature profile in thermal
entrance rone of the passage in case of constont
difference of wall temperatures (¢ = 0.25 )
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Yable [1) Local Nusselt number n
cambined €ntrance region
for Pr=0.5,1.0.2.0 .
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Toble [2] Locol Nusselt number in
combinen ehtronce fegion
{or Pr=0.§,1.0,2.0 .
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