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Abstract

The optimal power flow (OPF) is an optimization problem, in which the utility strives to
minimize its costs while satisfying all of its constraints. Artificial intelligence is used to help a
hypothetical electric utility meet its electric load economically. A genetic algorithm (GA)—a specilic
type of artificial intelligence—is employed to perform this optimization .

In this paper, a genetic algorithm is used to solve the OPF problem. A new genctic
chromosome is structured to represent the solutions. The new chromosome structure is chosen in such
a way that it greatly reduce the number of times the algorithm nust solve the load-flow equations.
Since solving the load-flow equations is time-consuming, this speeds execution of the algorithm
considerably .

A computer program, written in Matlab environment, is developed to represent the proposed
method. The program is applied to both the JEEE 30-bus test system, and the IEEE 118-bus test
system to demonstrate its ability and its potential to be used with larger systems. Thus, the proposed
algorithm is shown to be a valid tool to perform this optimization.

because restrictions on solution space

1. Introduction arc not made during the process. The

Genetic algorithms are essentially power of this algorithm stems from its
search algorithms based on mechanics ability to exploit historical information
of nature and natural genetics. They structures from previous solution
combine solution evaluation with guesses in an attempt to increase
randomized, structured exchanges of performance of future solutions [1].
information between solutions to
obtain optimality. Genetic algorithms Many power system problems are
are considered to be robust methods large enough that achieving adequate
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coverage is difficult and computation-
alty costly. Optimal power flow (OPF)
is one of the optimization problems in
power System operation. The OPF
algorithm is to allocate the total
glectric power demand (and losses)
among the available generators in such
2 manner that minimizes the clectric
utility’s total fuel cost [2]. Presently,
application of optimal power flow is
of much importance in power system
operation analysis under deregulated
environment of electricity industry. It
i1s highly constrained and has large
dimensions  nonlinear nonconvex
optimization problems, in particular
when Flexible AC Transmission
Systems (FACTS) devices are also
present in the system. Under such
situations either classical methods fail
to provide any solution or provide
only a very approximatc solution [3].
There are many methods for solving
this problem using genetic algorithm
[3-7]). The existing GA-based optimal
power flow can provide a reasonable
solution, but they have long
computation time for large secale
problems,

In this paper, a genetic algorithm
is used in a new way to solve the OPF
problem. A new genetic chromosome
Is structured to represent the solutions.
The new chromosome structure is
chosen in such a way that it greatly
reduces the number of times the
algorithm must solve the load-flow
:quations. Since solving the load-flow
:quations is time-consuming, this
speeds execution of the algorithm
considerably. To demonstrate the
uffectiveness of the GA-OPF method,
il is tested on test systems of varying
complexity.

2, Problem Statement
2.1 Optimal Power Flow Equations
In order to compute the power
flows in a power system, the system’s
bus admittance matrix, Ysus, must be
defined. If V and [/ are respectively
vectors of all bus voltages and net
injected currents in the systcm, the bus
admittancc matrix will satisfy [2].
I=YpsV (1)
wherc Yp,s is a square matrix which
depends on the admittance of all
transmission lines in the system. Let
ysi be the shunt admittance connected
at bus i, and let y; be the series
admittancc connecting buses i and j.
The elements of Yy are defined as [2]

-y i [# f
Yyus = )
Vst Z Yim i=j
In the optimal power flow problem,
it is necessary to find a relationship
between the voltage magnitudes and
angles and the real and reactive power
at the buses. For bus /, let ¥7and d1be
the voltage magnitude and angle,
respectively. Furthermore, let the Pg;
be the real power generated, let Pp;be
the real power demand (the real power
load), let Qg be the reactive power
generated, and let Oy be the reactive
power demand. Then, the net real and
reactive power at bus [ are given by
the load-flow equations [2]:
F=F;—-Py= VIIGH -V EVmT;m (3)
mek (/)
0 =0s-Oun= VIZBH -V ZVmUnu 4)
mek ()
where
T, =G, cos(d, - 8,) + B,sin(5,-8,) (5)
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U,} =G'} sin(&,—é‘,)—B,j COS((;,—JJ) (6)

Note that the Jacobian is defined in
terms of 7y and Uy, which are
themselves defined in terms of the
elements of Yous.

2.2 Economic Dispatch and
Optimal Power Flow

Traditional economic  dispatch
methods are based on setting
incremental costs of all units equal to
each other. Losses are accounted for
by incorporating penalty factors in the
incremental cost. However, the equal-
incremental-cost method is optimal
only if the incremental cost curves are
monotonically increasing [3], which
are not always true. In practical
applications, the incremental cost
functions are often constrained to be
monotonically increasing, regardless
of the generator’s actual behavior [8).

2.3 Implementation of a Genetic

Algorithm

GAs  are  general  purpose
optimization algorithms based on the
mechanics of natural selection and
genetics. They operate on string
structures (chromosomes), typically a
concatenated list binary  digits
representing a coding of the control
parameters phenotype of a given
problem. Chromosomes themselves
are composed of genes. The real value
of a control parameter, encoded in a
gene, is called an allele. GAs are an
attractive  alternative  to  other
opttmization methods because of their
robustness. There are three major
differences  between GAs and
conventional optimization algorithms.
First, GAs operate on the encoded
string of the problem parameters rather
than the actual parameters of the

problem. Each string can be thought of
as a chromosome that completcly
describes one candidate solution to the
problem. Second, GAs wuse a
population of points rather than a
single point in their search. Searching
the space with GA population
increases the probability of finding
local optima. But the point is it does
reduce the probability of ending up
with a solution at local optimum but
most probability at the global
optimum. Third, GAs do not require
any prior  knowledge, space
limitations, or special properties of the
function to be optimized, such as
smoothness, convexity, unimodality,
or existence of derivatives. They only
require the evaluation of the so-called
fitness function (FF) to assign a
quality value to every solution
produced [3].

2.4 Use of Linear Algebra to

Improve Convergence of the GA

Although a GA is an efficient
search technique for large problems,
its convergence can be improved
significantly by  encoding  the
candidate solutions in such a way that
avoids gencrating illegal candidate
solutions. For example, equality
constraints are difficult to implement
with a GA. One technique is to use the
equality constraints to solve for some
of the control variables in terms of the
others [1]. This has the effect of
narrowing the search space and
reducing the dimensionality of the
problem (since there are fewcr
unknowns remaining). Furthermore,
this avoids wasting computation effort
unnecessarily on illegal solutions.

In the OPF problem, it is not
feasible to use the load-flow equality
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constraints to eliminate state variables.
Enforcing the equality constraints
requires  solving the load flow
equations, which is a computationally
tatense task. Instead, the search space
is reduced via the representation of the
candidate solutions. For a power
system with N buses and N generation
buses, there are 2N state variables
{voltage magnitude and angle at each
bus} but only 2Nz control variables
(real and reactive power at each
generater). If the GA produced a
candidate solution by randomly
choosing a list of 2N state variables,
the solution likely would fail to meet
the equality constraints. In other
words, such a solution is unlikely to
have the correct amount of real and
reactive power at all (N-Ng) load
buses.

Thus, the equality constraints
restrict the choice of values for the
state variables. Let J be the load-flow
Jacobian matrix. Here, all buses—
zven the slack bus—are represented in
the Jacobian. Thus, 7 is a 2N x 2N
matrix. Let J. be rectangular matrix
formed by taking the rows of J
corresponding to the load buses. In
nther words, any partial derivative
mmvolving P or Q at a load bus is kept.
Thus, Jr is a 2(N-Ng) x 2N rectangular
submatrix of J. The matrix Jr has 2
rows for each load bus (corresponding
lo one P and one @ for each load bus)
arid 2 columns for each bus of any
xind (corresponding to one voltage
-nagnitude and one voltage angle for
ach bus, whether it is a load bus or
not).

Let x be a state vector that satisfies
the equality constraints. Any change to
the state vector, Ax, will change the
pewer vector by:

AS =JAx 0
where the state vector, x, and power
vector, S, are defined as:

x= [i:l and S= [Z] 8)

3. Solution Algorithm

The solution is composed of four
parts: selecting the control variables,
choosing the genetic operators and
fitness function, customizing the GA
for the problem at hand, and applying
the load-flow equations cfficiently.

3.1 Choosing the Control Variables

In the OPF problem, there are four
important quantities: voltage
magnitude, voltage angle, real power,
and reactive power. Of these four
quantities, two are independent
(control, or input) variables and two
arc dependent (output) variables. For a
traditional OPF problem, the unit
incremental cost funetions are used to
optimize the real and reactive power
(which are the control variables in this
formulation). Mathematically, the
choice of independent variables is not
important. For computational speed,
however, choosing voltage magnitudes
and angles as the independent
variables will allow the algorithm to
avoid solving load-flow problems for
each candidate solution. Although one
load-flow problem may not require a
great deal of speed, evaluating many
load-flows (one for each member of
the population, at each generation) is
quite slow.

GA convergence is much improved
if redundant control variables are
removed, and only an independent
subset is considered. That is, it is often
beneficial to use the equality



Mansoura Engineering Journal, (MEJ), Vol. 29, No. 2, June 2004, E. 10

constraints to eliminate unnecessary
control variables. Moreover, to reduce
computational effort spent on illegal
solutions, the linear algebra nullspace
technique is used to reduce the search
space. The nullspace eliminates many
(but not all) illegal solutions before
they are considered. Thus, for this
OPF problem, the GA control
variables are chosen as:

1. Nullspace coefficients, to specify
which member of the nullspace is
used

2. Tap settings for the tap-changing
transformers

3. Amount of VAR compensation

Each GA chromosome is a list of
numbers that provides the values of
these control variables. To change the
transformer tap settings, the system Y-
bus matrix is modified to account for
the transformer’s new impedance.

Once all control and output
variables are known, the fitness of the
candidate solution is computed.

'3.2 Choosing the Genetic Operators
and Fitness Function

A genetic operator is a set of rules
for extracting new solutions from
older ones. The selection of genetic
operators is often a heuristic process.
A fitness function is defined to
quantify the quality of any particular
candidate solution. A good choice of
operators and fitness function for one
type of problem can be a poor choice
for another problem,

Sometimes, the choice of operators
depends on the choice of fitness
function. Thus, the fitness function has
been included in this discussion of
genetic operators.

3.2.1 Fitness Function

In this paper, the fitness function is
chosen as [3]:
1

f=l+CT+P ®)

where C; is the total generation cost
and P is the penalty if any output
variable violates a constraint. This
penalty is the weighted sum, over all
output variables, of the amount each
variable exceeds its constraint. Of
course, if a wvariable is within its
allowable limits, its contribution to the
penalty is zero. The weighting factors
are chosen to be 10,000 for voltage
magnitudes, 10,000 for line flows, and
1000 for all other variables. This
choice of fitness function maps a cost
in the interval [0,0) to the interval
(0,1]. Thus, a solution with an infinite
cost {or infinite penalty) has a fitness
of 0. A perfect solution (one with zero
cost) has a fitness of 1.

Note that this penalty weight is not
the price of power or of anything else.
Instead, the weight is a coefficient set
large enough to prevent the algorithm
from converging to an illegal solution.

3.2.2 Genetic Operators

Crossover operators are used to
generate new solutions by taking
information from previous solutions.
Since the GA used here works with
lists of real numbers, two crossover
operators used here are arithmetic
crossover and two-point crossover.
These operators have the advantage
that they will always generate a set of
control  variables  within  their
allowable ranges, provided that the
original  solutions  were legal
However, these operators do not
guarantee that a solution will satisfy
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the other constraints {such as line-flow
limits), even if the parents satisfied
them. To  illustrate  arithmetic
crossover, let x, and x, be vectors
containing the coefficients of two
“parents”—candidate solutions chosen
tu participate in the crossover. The two
“children”—new candidate solutions
resulting from the crossover—are
formed by taking two weighted
averages of the parents. Let a be a
random number between 0 and I.
Anthmetic crossover calculates the
chitldren according to the following
equations [6]:

y=ax +(l-a)x, (10)

Y, =(-a)x +ax, (11)

In contrast, two-poini crossover
combines information from two
parents in a fundamentally ditferent
way. It literally breaks the parents
apart, exchanges some of the pieces,
and recombines the pieces to form two
neve solutions. This is illustrated in
Sigure 1, which shows one example of
how the operator might produce
:Y1ldren from two arbitrary parents.

AR TD|EFY ABlcd|E F)

ablcd)el] ab|{C Dfef]

Belore After

Figure 1. lHlustration of Two-peint Crossover

For illustrative purposes, the
chromosomes (the subdivisions of the
parents) are represented by the letters
A-F and a—f. In the OPF problem, the
chromosomes are real numbers. The
crossover operator randomly selects
the portion of the parents it will alter.
in this example, it is assumed that the
sperator will cut the parents at the

positions indicated by the wvertical
bars—after the second and fourth
positions. The two vertical bars
indicate the “two points” which give
tms operator its name. The effect of
two-point crossover is to exchange all
genes appearing between the two
points. Mutation operators are used
both to avoid premature convergence
of the population (which may cause
convergence to a local, rather than
global, optimum) and to fine-tune the
solutions.

Two forms of mutation are used
here: uniform and non-uniform
mutation. In both kinds of mutation, a
randomly chosen gene of a randomly
chosen candidate chromosome
(solution) s replaced with a new,
randomly generated value. In uniform
mutation, the new value is allowed to
be any legal value. This provides
coarse adjustment of the solutions. In
non-uniform mutation, the new value
is taken from a smaller and smaller
neighborhood of the original value.
This provides fine tuning of the
solutions. Let v; be the k chromosotne
of the gene v. That is, v is one
complete set of parameters, and & is
the randomly chosen piece of the
solution to be modified. Let /, and ux
be lower and upper limits on v;. For
the #& GA generation, non-uniform
mutation will replace v; with a new
chromosome 1, which is formed
according to [6]:

, {vk +A(t,u, ~v,) d=0

v, = 12
v -AGu, -1) d=1 (12
where d is a random digit that
specifies whether to increase or
decrease the chromosome.
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The function A¢ty) returns a value in
the interval [0, ¥] and is defined as:

Alt,y) = y(1-r"m) (13)
where T is the total number of GA
generations to be run, b is a parameter
that specifies how fast the function
A(ty) should converge to 0, and r is a
random number between 0 and 1. The
probability that A¢ty) is close to 0
increases as ! increases. If ¢ equals T
(that is, if the GA is performing its last
generation), the function A¢t,y) equals
0. In other words, the function
converges to 0 as the GA generations
progress. The non-uniform mutation
operator is useful because it allows a
coarse search at first (when ¢ << T),
but gradually narrows the search as the
algorithm runs. This allows fine local
tuning of the solutions.

3.3 Customizing the Genetic
Algorithm for OPF
In order to improve its
convergence, the GA is customized for
the OPF problem as follows:

3.3.1 General GA parameters

The GA was run with a population
size of 20 candidate solutions. The
population was allowed to evolve for
10 generations. Elitism is used to
guarantee that the best 5% of the
population survives into the next
generation. Some researchers evolve
the population until the population
becomes homogeneous (or nearly so).
However, in this paper, evolution
progresses for a fixed number of
‘generations. Crossover probabilities
are taken as 0.02, whereas, probability
of both uniform and non-uniform
parameter mutation are taken as 0.01

[7].

3.3.2 Accounting for Static-VAR
compensation

If the static-VAR compensation has
changed, a load-flow solution is
required to get an exact answer.
However, performing load-flow
solutions is time-consuming and
therefore undesirable. Thus, to save
time, the effects of the static-VAR
compensation  are  approximated
through Equation (7), which uses the
Jacobian to approximate the effects of
a change in reactive power on the
states. This approximation is not
accurate enough to  distinguish
between two solutions of similar
quality. Thus, the approximation is
sufficient to determine which solutions
are of poor quality and which are
promising, but a fast-decoupled load
flow must be used to determine the
exact effect of the VAR compensation
on the good-quality solutions.

3.3.3 Re-calibrating the linearization
of the load-flow equations

Since the load-flow Jacobian is a
lincarized matrix, it is necessary to
update the Jacobian if the GA’s best
solution has changed significantly.
Recall that all members of the GA
population (that is, all candidate
solutions) are defined in terms of their
difference with the best solution. Thus,
whenever a new solution is found that
improves the fitness by at least 1%,
the load-flow Jacobian, rectangular
submatrix, and nullspace are
recalculated.

The candidate solutions are ther
projected onto the new nullspace. This
projection is accomplished in several
steps. First, the best solution in the
population is chosen as the reference
solution. Its state vector is used to
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vompute the Jacobian, and al other
sp]utlons are defined with respect to
this _reference. For every candidate
solution, the old nullspace is used to
convert the nullspace eoefficients into
a corregponding State vector. This state
vector 1s substituted into the load flow
€quations to get the resulting real and
feactive power at each generator.,
Because modeling crrors resulting
from t!le linearization inherent in
computing the Jacobian, the real and
reactive power at the load buses may
not be exactly at their required
'valpcs_particularly if the state vector
varies greatly from the reference state
vector used in computing the Jacobian,
Even small changes in the states can
Jead to significant changes in power.
F'o counteract this error, the load bus
rea! and reactive powers are re-set to
their 'rcquired values. The new real and
reactive powers are then input to a
standard load-flow program to find the
rc':s‘ultmg, new  state vector. The
difference between the new state
vector and the reference state vector is
then projected onto the nullspace,
which gives the updated list of
tullsbace coefficients for the GA
porulation,

3.3.4 Seeding the initial GA
population

In theory, the GA should be able to
converge from a completely random
set of initial guesses (random initial
population)—if the GA ig allowed to
evolve for cnough  generations.
Howe\_’er, convergence i1s hastened if
any prior knowledge of the problem is
Incorporated into the algorithm. One
of the contributions of this work is to
speed  convergence by not wasting
tme  solving load-flow equations.

Because of the nuilspace method
employed in this work, the power at
load buses is never altered (to the
extent that. the linearization is
accurate). Therefore, the initial
reference guess is required to have the
correct power at the load buses. This
can be accomplished either by solving
for the reference state via a load-flow
solution or by using a state vector that
is known to satisfy the load bus power
requirements.

In this work, the population is
seeded with initial solutions given in
the literature. The 30-bus system is
seeded with the initial solution used by
Alsac and Stott [9]. The 118-bus
system is seeded with the state vector
similar to the one given by Reid and
Hasdorff[10].

3.4 Applying the Load-flow Equations
In order to apply the load-flow
equations efficiently, a relationship is
derived to account for changes in
transformer tap settings without
recomputing the relevant quantities
from scratch. Moreover, some
convergence issues are addressed.

In order to account for changes in
transformer taps, the first step is to
update the system Yz matrix.

Next, it is necessary to update the
load-flow Jacobian. As with the Yaus
matrix, it is possible—but not
desirable—to recompute the Jacobian
from scratch each time a tap setting is
changed. Instead, a contribution of this
work is the denvation of the tap
settings’ effect on the Jacobian.
Changing one transformer’s tap setting
alters a 4x4 submatrix of the Jacobian.
Let this submatrix be partitioned into

four 2x2 submatrices:
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A = A AT, 14
Axd T AJ M ( )
21 22

To calculate AJss, we change one
transformer tap setting at a time and
subtract the old Jacobian from the
new. The matrix AJss will be O at the
positions of J not affected by the
transformer. The only elements of J
affected by a transformer are thosc
clements that depend on the Youw
elements connected to the transformer,
Thus, the change in J will depend on
the changes in Yaus. so that:

AY, ={t, -0)Y, (15)
Let AG and AB be defined respectively
as the real and imaginary parts of AY,..
Similarly, let AG,. and AB,. be defined
respectively as the real and imaginary
parts of AY.,. Define Ve and V,
respectively as the voltage magnitude
at the primary and secondary of the
transformer. Similarly, define §p and
ds as the corresponding voltage angles.
For convenience, define:

G, =AGsin(d, - 4) (106)
G = AG cos(5, - J,) (17
B, =ABsin(S, ~J) (18)
B. =AB cos(, -5,) )

where the subscripts attached to G and
B (that is, S or C) refer to whether the
variables are defined in tcrms of the
sine or cosine of the difference in
angle at the primary and secondary.
The submatrices in Equation (14) are
found to be:

-Gg+B, Gg—B; (20)
M=Vl [‘ Ge~B. Gg+B,.:
o [ PG+ B +2¥, Gy V(G + By )]
- Vs(Ge - By) V(G- By)
@2n
G.+B;, -G.-B ©2)
Ao = V"V{— G.+B; G- B,

AL, = Ve(Gg = B.)-2Vp By, V(G - B(')]
- I":; (—Gs - Bc) Vr(‘G.v - B(')

(23)

4. Numerical Applications

A computer program has bcen
developed to perform the proposed
methodology. The program was
written in MATLAB environment and
run on 1.7 GHz Pentium IV computer.
Two e¢xample cases are studied to
tllustratc  the applicability of the
approach to practical application.

4.1 IEEE 30-Bus Test System

The first test system is the
1IEEE 30-bus, 41 branch system [8-9].
It has a total of 24 control variables as
follows: five unit active power
outputs, six generator-bus voltage
magnitudcs, four transformer-tap
settings, and nine bus shunt
admittances. The generator data of this
test system is given in Appendix (A).
A summary of the output results are
shown in Table 1. The generated
power and total cost per hour are
compared with that obtained by Alsac
and Stott’s paper [8] to demonstraic
the accuracy of the algorithm, the
comparison is shown in Table 2
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Table 1, GA Optimal Power Flow Results for 30 Bus System

Pu deg. MW MVAR MW MVAR | MVAR
1 1.032 0 0 0 170.32 -34179 |0
2 1.027 -3.3335 21.7 12.7 53.452 66.389 |0
3 1.0123 -5.0768 24 1.2 0 0 0
4 1.0076 -6.0959 76 1.6 0 0 0
5 0.99437 | -8.8272 94.2 19 20.814 25634 |0
6 1.0023 -7.1570 0 0 0 0 0
7 0.99058 | -8.3792 22.8 10.9 0 0 0
8 1.0078 -7.7099 30 30 19.605 28.05 0
9 1.0077 -8.3895 0 0 0 0 0
10 | 1.0009 -10.6086 | 5.8 2 0 0 19
11 1.0189 -5.4921 0 0 13.454 0.75218 | 0
12 | 0.98883 |-9.5223 11.2 7.5 0 0 0
13 1.0095 -8.0096 0 0 14,504 36663 |0
14 0.97663 |[-105433 [6.2 1.6 0 0 0
15 0.97507 | -10.7467 | 8.2 2.5 0 0 0
16 0.98623 |-10.3095 | 3.5 1.8 0 0 0
17 1099086 |-10.7547 |9 5.8 0 0 0
18 | 097131 [-11.4755 |32 0.9 0 0 0
19 0.97241 | -11.6927 | 9.5 3.4 0 0 0
20 097869 [-11.4870 |22 0.7 0 0 0
21 0.98796 | -11.1260 | 17.5 11.2 0 0 0
22 098853 |[-11.1214 | o 0 0 0 0
.23 [ 097174 | -11.3122 |32 1.6 0 0 0
24 097624 |-116726 |87 6.7 0 0 43
25 098639 [-11.7800 [0 0 0 0 0
26 | 0968815 |-122353 |35 2.3 0 0 0
27 1.0017 -11.5666 | 0 0 0 0 0
28 0.99727 | -7.6859 0 0 0 0 0
29 0.98138 [-12.8512 |24 0.9 0 0 0
30 (096964 |-137743 | 106 1.9 0 0 0
Total 283.4 126.2 | 292.149 | 123.30 | 23.3

Table 2, Comparison between Traditional and GA Approaclies

uantity Alsac and Stott [8] | Propesed Approach

Cost per hour | $802 $801.44

P(1), MW 176 170.32

P2) 49 53.45

P(5) 22 20.81

P(8) 22 19.61

P(11) 12 1345

P(13) 12 14,51
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Thus, the proposed approach was able
to find a cost within 0.04 % of that by
Alsac and Stott. This demonstrates the
algorithm’s accuracy in finding an
answer.

4.2 IEEE 118-Bus Test System

In order to demonstrate the
algorithm on a more complicated
system, the algorithm was run on the
IEEE 118-bus system. The 118-bus
data was gathered from a variety of

E. 22

Appendix (B). For the test system, the
Newton-Raphson method failed to
converge. Instead, it gave unrealistic
voltage values such as 10° p.u.
However, the fast decoupled load flow
did converge for this system. A
summary of the output of the
computer program are shown in Table
3. The resultant total cost per hour is
$18726.8. Convergence  requires
approximately 15 minutes.

sources [8-11] and is given in
Table 3, GA Optimal Power Flow Results for 118 bus System
Bus Voltage Angle Load Generation Injected
No. p-u. Deg. MW | MVAR | MW | MVAR | MVAR

1 1.0289 0 51 21 110.96 54.024 0
2 1.0073 1.1682009 | 20 9 0 0 0
3 1.0164 0833236 | 39 10 0 0 0
4 1.0083 0.06436503 | 30 12 0 0 0

(s 1.0421 0.36175858 | 0 [ 9 0 -40
6 1.00%4 4167181 | 52 22 0 0 0
7 1.0008 1.5027802 | 19 2 0 ) [}
8 1.0136 3.29982811 | 0 0 ] 0 0
9 1.0491 9.69155844 | 0 0 0 0 0
10 1.0 163200017 | 0 o 402.74 —41.409 0
1 0.99736 4.5924179 | 70 23 o 0 0
12 1.002 1.2818463 | 47 19 184.78 40382 0
17 0.98453 40012414 | 34 16 0 0 ]
14 0.9989 34289152 | 14 1 [ o 0
15 1.0023 7.7114200 | 90 30 0 0 0
16 1.004 -3.4436402 | 26 10 0 0 ]
7 1.0338 -5.644767 11 3 0 [] 0
18 1.0088 -7.842626 60 34 0 0 0
19 0.99504 54258978 | 45 25 0 0 0
20 0.98968 8.2167685 | 18 3 0 0 0
Y 0.98969 71757088 | 14 8 0 0 0
22 0.99503 .5.2707364 | 10 5 ] o 0
23 1.0237 4,4154318 | 7 3 0 ) 0
24 1.0028 -3.0838408 | 0 0 o 0 0
25 1.0524 6.89152024 | 0 0 281.87 -12.039 0
28 0.99263 8.50897632 | 0 [ 279.94 -49.392 0
27 1.054 -5.9530176 | 62 13 0 ) 0
28 1.071 -7.8472458 | 17 7 0 ) 0
29 1.0873 87473282 | 24 4 0 0 0
30 0.99504 13408327 | 0 o 0 0 0
N 1.1083 -8.7977484 | 43 27 0 0 0
32 1.0451 -3.5007953 | 59 2 1o 0 0
33 0.99912 -9.9660046 | 33 9 0 ] 0
34 1.0076 11.186975 | 89 26 o 0 14
3 1.0034 11622095 | 33 9 0 0 0
38 1.0027 11615546 | 31 17 o 0 0
7 10145 10765332 | 0 0 0 [] -25
3p 0.97362 -5.9650497 | 0 0 0 0 0
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739 0.99776 1481207 27 T 0 0 0
a0 1.0003 -16.297746 20 23 0 0 0
a1 0.99568 17.017953 7 10 0 0 ]
42 1.0087 1632754 a7 23 0 ° 0
4 0.9929 42671508 18 T [ 0 0
“ 0.95785 -12.366084 18 8 0 0 10 ]
a5 0.9845 11330787 | 83 22 ) ) 10
45 0.9941 -9.6543163 28 10 o 0 10
&7 1.0028 -7.6873568 2 0 0 0 0
48 1.0153 -7.3006112 20 1" [ 0 15
a3 10216 -6.0601604 87 30 301.61 50.052 0
50 1.0045 -8.1858396 17 4 0 0 0
51 0.9719 -10.926853 17 8 [ 0 0
| 52 0.96293 -11.922078 18 5 0 0 0
53 0.05515 -13.009549 2 11 0 0 0
54 0.96624 .12.206837 113 32 0 0 0
[ 55 0.96578 -42.29851 63 22 0 0 0
56 0.96682 42156417 84 18 0 0 0
57 0.97801 -10.86039 12 a ) 0 0
56 0.96729 A1.742743 12 3 0 0 0
59 1.0228 -6.9448052 277 13 246.51 160.02 0 ]
I"80 1.0107 37738923 | 78 3 0 [) 0 ]
[ & 1.0118 29344538 | 0 0 176.11 -61.257 a ]
52 1.0108 -3.5705141 7 14 0 0 0 —
63 0.98837 -4.3306341 0 o 0 0 o l
64 0.98762 -2.9068373 ] o 0 1] 0
65 1.0106 0.7625477 0 o 351.26 -160.96 0
66 1.0425 018494461 | 39 Ty 189.28 101.36 0
67 1.0217 -2,339152 28 7 0 0 0
&R 1.0211 2.0690031 | 0 [} 0 0 0 |
) 0.95323 -4.9693048 0 0 0 0 0
70 0.95459 -5.4761268 66 20 [ [} 0
K 0.96045 -8.9369748 0 0 0 0 0
72 0.97042 5.9266616 [} ) 0 [ 0
(73 0.96447 -8.9822383 0 0 [ 0 0
74 0.92124 -11,335371 68 27 0 0 12 ]
s 0.92921 -10.237586 a7 17 0 0 0
| 76 0.91488 -11,043736 68 36 0 0 0
M'r 0.99713 -5.3500382 61 28 0 0 0
18 0.99662 -5.592055 T4 26 0 [} 0
79 1.0063 5146123 3% 32 [ 0 20
80 1,0468 .2.5181436 130 26 360,32 211.11 0
81 1.0103 -2.2053094 | 0 0 0 0 0
| 82 0.98411 -3.1686784 54 F v 0 20
83 0.97665 -1.787395 20 10 0 0 10
44 0.97227 105911001 | 11 7 0 0 0
a5 0.87795 276012452 | 24 15 0 0 0
86 0.28508 097247899 | 21 10 0 0 0
87 1.0242 0.66199389 | 0 ] 0 0 0
88 0.97926 6.32830405 | 48 10 0 0 0
89 0.99681 10.7114209 | 0 0 490.47 -9.3697 0
%0 0.99223 748716578 | 78 a2 0 0 0
91 0.98304 6.77578304 | 0 0 0 o 0
92 0.98135 592666157 | 65 10 0 0 0
93 0.97654 292608862 | 12 7 0 ) 0
| 94 0.98075 0.79297473 | 30 16 0 ) 0
E 0.57236 0.9720206 | 42 Y] 0 0 0
96 0.9864 -2.1161574 38 15 0 0 0 ]
E 1.0125 -2.6648778 | 15 9 0 0 0 ]
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98 1.0238 1.8210084 | 34 8 0 0 )
93 1.0094 10723453 | 0 ) ) ) 0
100 1.0056 241730328 | 37 18 201.69 45.243 0
101 0.3818 301478228 | 22 15 ) 0 0
102 0.98046 4.68500121 3 3 ) ) )
103 1123 2.35708556 | 23 18 17172 34.287 0
104 0.97638 A.1494652 | 38 25 0 0 )

[ 108 0.97373 A.937796 31 26 0 0 20
106 0.96899 -2.4741406 43 16 0 0 1}
107 0.96708 38332506 | 28 12 ) ) 6
108 0.98208 2.9021983 | 2 1 ) 0 0
109 0.08574 32547364 | 8 3 ) ° 0
110 0.99907 3.8438503 | 39 2 ) o s

| 141 1.0058 .3.9668948 | O ) 0 0 0
12 10161 5.2666417 | 28 13 0 0 0
143 1.0382 5.8061548 | O 0 ) ) 0
114 1.0449 87517189 | 8 3 0 0 )
115 10451 87517189 | 22 7 [} 0 0
118 1.0219 20724408 | 0 0 0 ) )
17 0.98613 .2.7659435 | 20 ) o 0 0
118 0.91677 41411345 | 33 15 0 ) )
Total 3678 | 1438 | 393524 | 387.63 | 88 ]

5. Conclusion

A GA solution to the OPF
problem has been presented and
applied to different size power
systems. The advantage of the GA lies
in its ability to handie any type of unit
characteristic data whether smooth or
not. Avoiding the repeated solution of
the load-flow equations is the main
advantage of the proposed solution
algorithm. The unique chromosome
encoding presented in this paper
improves execution time substantially.
The mathematical derivation of the
effects of the transformer taps on the
Jacobian saves execution time by
avoiding the recomputation of the
entire matrix. By using linear
algebra’s nullspace theory to reduce
the search space that must be
examined, the algorithm spends less
time evaluating illegal solutions.

A computer program, written in
Matlab environment, is developed to
represent the proposed method. The
program is applied to the IEEE 30-bus

test system, and the results are
compared with traditional OPF
methods to demonstrate its
applicability and accuracy. The
program is then applied to the IEEE
118-bus test system to show its
potential to be used with larger
systems. The proposed algorithm is
shown to be a valid tool to perform the
optimal power flow optimization
problem.
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.1 Appendix (A), IEEE 30-bus System Data

Table A-1 Generator Data, 30-bus System™

{_Bus

Pmin | Pmax Qmin Qmax a b c J
1 0.50 2.00 -0.2 2.5 0 2.00 0.00375
2 0.20 0.80 | -0.20 | 1.00 0 L.75 0.0175
5 0.15 0.50 | -0.15 { 0.80 0 1.00 0.0625
8 0.10 0.35 | -0.15 | 0.60 0 3.25 0.0834
11 0.10 0.30 | -0.10 [ 0.50 0 3.00 0.0250
13 0.12 0.40 | -0.15 | 0.60 0 3.00 0.0250

All power data are in per-unit, with a base of 100 MVA.
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7.2 Appendix (B), IEEE 118-bus System Data

Table B-1 Generator Data, 118-bus System

E. 26

Bus Pmin Pmax Qmin Qmu A b C

i 1.0 | 7.0 3.0 | 3.0 150 | 1.89 | 0.0050

10 1.0 |55 1.47 | 2.0 115 |2.00 | 0.0055 |
12 01 |35 035 1.2 40 | 3.50 | 0.0060

25 0.5 |35 0.47 | 1.4 122 | 3.15 | 0.0055

26 1.0 |45 | -10.0 | 10.0 | 125 |3.05 | 0.0050 |
49 0.5 |35 0.85 | 2.1 120 | 2.75 | 0.0070

59 05 |30 |-06 |18 70 | 3.45 | 0.0070 |
61 05 |30 1.0 | 3.0 70 | 3.45 | 0.0070

65 0.5 | 5.0 -0.67 | 2.0 130 | 2.45 | 0.0050

66 05 |50 0.67 | 2.0 130 | 2.45 | 0.0050

80 05 |55 1.65 | 2.8 135 | 2.35 | 0.0055

89 1.0 | 8.0 21 | 3.0 200 | 1.60 | 0.0045

100 |05 |35 50 |1.55 |70 | 3.45 | 0.0070

103 |0 2.0 0.6 | 0.6 45 | 3.28 | 0.0060

Table B-2 Limits on Static VAR Compensation, 118-bus System

Bus | QcMin | QeMax
4 -3.0 30
6 -0.6 0.6
15 -0.1 0.3
18 0.6 0.6
i9 -0.6 0.6
24 ~-3.0 3.0
27 -3.0 3.0
3 -3.0 3.0
32 ~0.6 0.6
kY| -0.6 0.6
36 -0.6 0.6
40 -3.0 3.0
42 ~-3.0 3.0
46 -1.0 1.0 -
54 -3.0 3.0
55 -0.6 0.6
56 -0.6 0.6
62 -0.2 0.2
69 -0.6 0.6
70 -0.6 0.6

Bus QcMin ch\hx
72 -1.0 1.0
73 -1.0 1.0
74 -0.6 0.6
76 -0.6 0.6
77 -0.2 0.7
88 -0.6 0.6
87 -1.0 10.0
90 -3.0 3.0
91 -1.0 1.0
92 -0.6 0.6
99 -1.0 1.0
104 -0.6 0.6
105 -0.6 0.6
107 -2.0 2.0
110 -0.6 0.6
111 -1.0 10.0
112 -1.0 10.0
113 -1.0 2.0
116 -10.0 10.0
]






