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Entropy generation is an effective tool in energy process analysis and
optimization. Problems as entropy generation in heat exchangers due to pressure
losses and due to heat transfer are discussed. The entropy generation number Ns
provides a meaning for evaluating the performance of a heat exchanger.

The performance of in-line tube banks are studied at constant relative transfer
pitch with variable relative longitudinal pitch and vice-versa. The results of the
performance showed that there is a minimum entropy generation occurs at
particular Reynolds number and number of transfer units for each tube bank.

Introduction:

Heat transfer, as a way of thinking and formulating problems, is considerably
older than thermodynamics. The fundamental engineering problem in heat transfer,
the relationship between temperature difference and heat transfer rate was
formulated more than 200 years ago by Newton, Biot, Furier et. al. Heat transfer
processes and devices are inherently irreversible; in other words, heat transfer
phenomena affects the one way destruction of available work. Nowadays, in which
available work is increasing scare and expensive, it is necessary to describe in
precise terms how wasteful heat transfer phenomena are, so that responsible
decisions can be made about whether and how to curb such waste.

Consideration of available energy and irreversibility falls within the
thermodynamic realm. Thermodynamics, in general, and the second law, in
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particular, occupies a central place in the solution of heat transfer problems.
Eatropy generation should assume a central role in heat transfer, as central as the
relationship between temperature difference and heat traosfer rate or the
reiationship between pressure drop energy and flow through a duct or the
combination between entropy generation caused by heat transfer rate as well as
pressure drop energy.

A heat exchanger is an inherently irreversible device and, consequently the
second law aspects of heat exchanger theory and design have been considered
frequently (1, 2, 3].

It can be readily shown that for most flow passages that might be used for the
heat transfer surfaces of an exchanger, the heat transfer rate per unit of surface area
can be increased by increasing fluid-flow velocity. But, the friction-power
expenditure is also increased with flow velocity. So that, the frictional pressure drop
losses are said to be coupled in the sense that any design change aimed to reducing
one type of loss is likely to have an opposite effect on the other. Due to this coupling,
it is then difficult to determine a priori whether a proposed design modification will
yield a net improvement in heat exchanger performance.

This paper presents the coupling between losses due to heat transfer across the
fluid-to-fluid temperature difference and losses caused by fluid friction, for in-line
tube banks with various relative longitudinal pitches at constant relative transverse
pitch and vice-versa using the concept of heat exchanger irreversibility. Based on
this concept, the entropy generation number is used as a basic parameter in
describing heat exchanger performance. this dimensionless group was proposed
by[1].

The entropy generation number is used as indicator for heat exchanger
performance, namely the ratio of heat transfer energy to lost fluid bumping power
as defined in [4, 5[. It is shown in what follows that increasing the ratio of heat
transfer energy to pumping power is not sufficient for calming improvements in heat
exchanger performance.

Further studies on compact cross flow heat exchangers[6] and on regenerators of
gas turbine [7] were mainly concerned with the optimization through the choice of
the minimum entropy production.

This paper deals with:

(a) Developing a general expression of the entropy generation.

{b) Defining two new correlations for optimum NTU and Reynolds number at

which the heat exchanger operates more efliciently.

(c) Investigating which type of in-line tube heat exchanger aperates with

minimum losses at the range of operation.

Entropy Generation Analysis:
For the heat exchanger, the entropy generation rate can be given by
ds,,, =m, ds, +m_ds, (1)
where the heat transfer to the environment is neglected, and the subscripts c and h
are for cold and hot streams respectively.
Expressing the entropy generation in a general way.
ds=C, dT/T -(8v/2T), dP (2)
The integration between inlet and outlet gives
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Sy = m‘{c,‘ In(T,/7,), - [(2v/am),, dP}
]

9
+ m,{c,c in(T, /7)), - [ (20/8T),, dP} (3

with the assumption that C  and C,_ are averaged between T: & ', Tor eu n
stream. There.are two cases, the first when the capacity rate of the hot s eam is 1 e
minimum capacity rate (C, = C;, ). The second case, when the capacity rate of tne
hot stream is the maximum capacity rate (C, = C. ).
(I) Entropy generation due to heat transfer with temperature differcnce:
The heat exchanger effectiveness (g) is defined as the ratio of the actual heat

transfer (Qge, ) to the maximum possible heat transfer (Q,,,) [10] where,

Q= C:.(Tm = Tn] =C¢ (Tc. _Ta) (4)

Qe = Cm(Tn "Tm) (5
Combining equation (4) and (5) with the definition of the effectiveness leads to,

Q.ﬂ Cn(Tu _Tho) Cc(Tcn 5= Tﬂ)

£= - = (6)
le cmin(Thl == TCI) Cnlln('rbl = TCI)
(i) Entropy generationat C, =C__
when C, = C__ equation (6) becomes,
gz'l;‘hT_, _1=-(1,17,) ™

T-To 1-(T5/T)
Then the ratio of outlet to inlet temperature for the hot stream (T, /T,,) can
be put in this form
LY =1-g(1- 8
T = g(1-1) ®)
where t=(T,/T,)is the absolute inlet temperatures ratio. Also thee can
be put in the form

- Crnu(TCu "Tm) - _l__[l"Tn. /T,,,]

- Cmn(TM_—TCI) _-{I'I I-%

where ® is the ratio of the minimum fo maximum capacity rates, Lets us take
the absolute outlet to inlet temperature ratio for the clod stream, (T, /T, )

(9)

as,
To o tveo (/1) (10)
(=}
The entropy generation due to heat transfer with temperature difference is
given by,
S, s = (MCy), In| 22 |+ (mC,), Inf 1= ()
i TN TCI

Combining equations (8) and (10) with the equation (11) gives,
Syen.a1 = Cu In[1-8(1-7)]+C,_, In[1+e0(1/x-1)] - (12)
(ii) Entropy generation at C, =C___
Where C, =C_, , the ratio of outlet to inlet temperature in terms of
effectiveness becomes
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oo Con(Tu=Ta) _ [(’r T )]

C.(T.-T,) o|t/t -1
So that,
T _14en(1-7) (13)
T =Ty /T —1
Al gmgh =gl _?F?-T_
So that,
IT:-.-.u-s(l-:) (14)

Combining equations (13) and (14) with equation (11)
s Coe {In[1-20(1-7)] +0 In[1 +£(1 /T -1)] (15)

gen AT

(O0) Entropy generation due to pressure drop
The entropy generation due to pressure drop for a heat exchanger is given from

equation (3), : ‘
Spm.ar =—m, [ (20/3T),,, dP ~m [ (d0/aT),,dP (16)
I ]

for a liquid it is assumed that
(dv/3T), =Po = constant

where p is volumetric expansion coefficient

While I‘orapafectgu
P, + AP
j(aufar), dr..jl}{, dP-Rln(P ]-nm[—!-ﬁ-]
=Rin [ui‘:-,’;] (17)

with the hypothesis AP/P, <<lol:egeu

o

[@vram), ¢r=nm[1+5;-)umwr, (18)
In gen:enl it is possible to express

[(@oram), ap=yaP ; (19)

|
where y = Bv (20)
for a liquid, and

Y=R/P, 1)
for a perfect gas

(i) Entropy generationat C, =C__
When C,=C_, , the entropy generation due to pressure drop is given by
combining equations (16) and (19) to give
sll-.M‘=—'(-cﬁlch)YiAPh-(C-n!Ch)?cAr¢ (22)
(i) Entropy generation at C, = C,,. ¢
In this case, when C, = Cpyp, the S, ,, becomes,
s-.ﬂ=-—(c—t’lch)7l AP, - (C,./C, ) 7. AP, (23)
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ration:
The total entropy generation due to heat transfer with temperature difference
and pressure drop is given by:
(1) At C, =C_, , adding equations (12) and (22) leads to
Sy = Coe{® 1n[1-£(1-7)] +1n[1+0e(1/7 -1)]
~(@/C,) ¥, AP, —(1/C, ) v, AP, } (24)
(2) At C, =Cpyy s adding equations (15) and (23) to get
Sy = Cpud [1-02(1-1)] +0 W1 +e(1/7 -1))]
| ~(1/C,,) v, &P, ~(0/C, ) . AP} (25)

Since the momentum transfer information is condensed in dimensionless group
such as friction factor, skin friction coefficient or drag coefficient, and since heat
transfer results are expressed similarly in the form of Nusselt or Stanton number, it
is appropriate to define a dimensionless group for second-law analysis in heat
transfer, the entropy generation number Ns [1]. This group is defined in a manner

similar to friction factor and Nusselt number
Actual entropy generation rate

*  Characteristic entropy genration rate

ie. Ng= (26)

S
G -.
Therefore with the help of definition of Ns, equation (24) can be put in the
form, when C, =C__

Ny =0 In[1-e(1-1)]+In[1 +ee(1/t -1)]

'(m“cp.)'fn AP.—(IIC")YtAP' 27)
Also, when C, = C,,,, equation (25) can be take the form,
Ng = In[l-ee(l-1)]+0n[l+e(l/T -1)]

-(1/C, )7, AP, - (0 /C, ) Y. AP, (28)
Equations (27) and (28) can be put in the form
Ng =Ngr+Ngp +Ngp, (29)
where
Ng ¢ is the entropy generation number due to heat transfer with temperature
difference,
Ngp is the entropy generation number due to pressure drop of a hot
stream,
Nsp, is the entropy generation number due to pressure drop of a cold
stream.
(1) AtC, =C_,
Ny =oIn[l-g(1-v)]+n[1+we(1/ -1)] (30)
Ns.r. =_(°lch)7u AP, (31)
Ny, =—(1/C, ) v, AP; (32)

(1) AtC, =Cpae
Ns.r = In[l-oe(l-1)]+oIn[1+e(1/1 -1)] (33)
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Ngp, =—(1/C, ) 7, AP, (34)
NS,P' =_(mt’C’.)Y‘APC (35)
It can be shown that Ng; has anoextremum at ONg , /Ge = 0, simplifying this
equation leads to € = 1 (36)
1+o

The effectiveness which given by above equation is the value at which maximum
irreversibility contribution from heat transfer with temperature difference.

Application of Second Law Analysis For Crossflow

of In-Line T Ban

Heat transfer of tube banks is governed mainly by the flow velocity, tube
arrangement, fluid physical properties, thermal load, and heat flux distribution. In
the dimensionless from,

Nu=f(R,,P ,K/K_,p/p,,C /C,_,p/p.,S,/D,S§,/D) (37)
where
S{= Trapsfer pitch , §| = Longitudinal pitch , D = Tube diameter

and Re is based on the minimum flow area. Experimental results are interpreted by
functional relation in the exponential form [4]. Where C and m in a definite region
of Re are governed by the tube arrangement, and the exponent n and p denotes the
effect of fluid physical properties on heat transfer. An experimental investigation of
the heat transfer characteristics was performed by [8, 9] for in-line banks.

The Stanton number which is defined by

St=Nu/Re.Pr (38)
and the number of transfer unit NTU is defined [10]
NTU=(4L /D) $; (C/ Cyin) M, (39)
where,
D, is the hydraulic diameter _
L is the length of heat exchanger flow path
C is the capacity rate of the stream
Cppin i5 the minimum capacity rate
, is the surface efficiency parameter
The effectiveness e when the stronger fluid is mixed is given by [10]
1
£ =—{l—exp[—m(l-—exp(—NTU))]} (40)
©
but when the weaker fluid is mixed
E=1+e1p[~(1—exp(~NTU-m))!'m] (41)

Form equations (37) to (41) the entropy generation number due to transfer can
be evaluated.

Pressure losses across banks of tube is governed by the flow dynamics in the
intertube spaces. The existence of considerable acceleration and deceleration over
tubes develops separated flow that absorb large amounts of kinetic energy of fluid
motion. Consequently, tube arrangement must be a determining factor for the
pressure drop, AP for (low through a bank of tubes is a function of the geometry
(expressed in terms of S; , Sjand D), the number of tube rows in the bank Z, the
flow velocity u, and the physical properties of the fluid

AP =f(u, S, S}, D,Z, p, p ) (42)
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It is convenient, in what follows, to define u as the maximum velocity attained by
the fluid as it passes through the varies gaps between the tubes. Relation (42) may
be written in dimensionless form,

Eu=/(Re, 3, b, Z) (43)

The appropriate equations for Eu was performed by [9] for in-line tube baunks.
The pressure drop AP across the tube banks is then given by,

AP =Eu (pu¥/2)Z (44)

So that, the entropy generation due to pressure drop can be accounted.

The entropy generation calculations have been carried out according to the
equations formulated in entropy generation analysis as before at 1=0.5 and @=1.0.
As an input, the data reported in [8, 9] for heat transfer and drag in tube bundle of
in-line tube banks in the form of correlations for Nusselt number and Euler number.

The results are presented in the following form
(i) Ngp versusRe (i) Ng o versus Re
(iii) Ny versus Re (iv) Ng  versus NTU
(v) &, Irreversibility distribution. Ratio versus Re

Fig. (1) presents the results of Ng ; as a function of Reynolds number for values of
relative transfer pitch "a". The monotonic increase in Ng , with Reynolds number
for all values of "a" reflects the efTect of the greater power expended to overcome
drag as Reynolds number increases. This effect may also be recognized by
considering the fact that in the limit as Reynolds number goes to zero, drag goes to
zero.

The effect of narrowing the transfer pitch, i.e., reducing the value of "a" will be
to increase velocity gradient between adjacent tubes and hence lead to greater flow
resistance. This is reflected in Fig. (1) as the lowest Ng , for a=2.5, increasing
progressively as "a' goes to 1.25.

In Fig. (2) Ng ris plotted against Reynolds number, indicating that entropy
generation due to heat transfer differs from entropy generation due to flow drag
(pressure drop) in the essential way, that as Reynolds number increases entropy
generation decreases. For in-line tube banks, all transverse spacings have the same
heat transfer behaviour but not the same friction drag behaviour [8],this means that
the entropy generation due to heat transfer is the same for all transfer spacings. This
is reflected in Fig. (2), where all the lines for different "a" converge to a single line.

Both of heat transfer coefficient and pressure drop are increasing fluid-flow
velocity. The losses of heat transfer and pressure drop are said to be coupled in the
sense that any design change aimed to reduce ome type of loss is likely to has an
opposite effect on the other, as shown in Fig. (3). This figure illustrates that the
entropy generation due to pressure drop increases by increasing Reynolds number
and vice-versa for the entropy generation due to heat transfer. Due to this coupling
there is optimum point at particular Reynolds number at which minimum entropy
generation occures.

The total entropy generation lines due to heat transfer and drag of external flow
for in-line tube banks are not intersecting as shown in Fig. (4). The value of a=1.25
has higher Ns throughout. Widder spacing are better for lower entropy generation.
The final choice will of course depend on a cost estimate for different designs. For
largest transverse pitch a=2.5, the minimum entropy generation occrues at about
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Reynolds number 64000, The range of the Re from 28000 to 64000 is the range for
minimum entropy generation for all investigated transverse pitches .

A clear and well-defined minimum Ns for in-line tube banks is shown in Fig (5).
In this Figure the Ns due to the interaction of the two entropy gemeration
mechanisms is plotted against NTU. The locus of the minimum Ns being in a
straight line. We may even (it an equation for the straight line to interpolate or
extrapolate mininma for different values of "a' while ""b" is kept constant b=2.0,

The occurrence of the minima Ns has the important connotation that, if a bundle
geometry is chosen suitably and operated at appropriate Reynolds number, it will
have the best entropy generation characteristics. Such a result is an additional
criterion for design and operation of heat exchangers.

The results of irreversibility distribution ratio (Irr, Dist. Ration, ¢) against the Re
for various value of ftransverse pitch are presented in Fig (6). The entropy
generation Ns, has been arranged to show the special forms assumed by Nsin
the two extremes,  — 0 and ¢ — . As expected, in a situation dominated by heat
transfer irreversibility (¢ — 0) the entropy generation number will be proportional
among to the heat transfer coefficient. Conversely, when the irreversibility is
dominated by AP effects (¢ — ), Ns will vary as the friction factor. Fig (6) reflect
that ¢<1, this means that, the entropy generation caused by heat transfer is grater
than that caused by pressure drop. Thus, from the viewpoint of thermal design
optimization, the systematic elimination of irreversibility sources in the system is the
direct route towards to minimize the entropy generation caused by heat transfer
irreversibility by increasing the heat transfer coefficient.

At constant transverse spacing, a=2.0, the total entropy generation due to heat
transfer and drag of external fluid Ns is plotted 2gainst Re as shown in Fig. (7) for
in-line tube banks. The effect of narrowing the loagitudinal pitch, i.e., reducing the
value of "b" will be reduced Ns. As the lowest Ns for b=1.25 increasing progressively
as "b" goes to 2.0. For all longitudinal pitches investigated there is a minimum Ns
indicated in Fig. (7). The minimum WNs is also indicated in Fig. (8), where Nsis
plotted against NTU,

-

121 ons:

The results showed that, the entropy generation number is generally non-
monotonic with respect to changing design parameters. Consequently, the use of
design rules such as minimizing the fluid-to-fluid temperature difference or
maximizing the ratio of beat transfer rate to fluid bumping power is not sufficient
for seeking improved thermal performance. The Ns criterion is a more adequate
measure of thermodynamic imperfection and provides a more complete picture of
how various design variable influence of thermal performance. The second law is
used to evaluate the performance of crossflow heat exchanger for in-line tube banks
at ©=1.0 and 1=0.5. The tube banks are analysed for tube banks of constant relative
transverse pitch (a=2.0) and variable relative longitudinal pitch and vice-versa. The
coupling of entropy generation due to heat transfer and pressure drop of external
flow are as a qualitative results for the performance of these heat exchangers. the
results indicated that, the entropy generation number Ns decreases with the increase
of Re up to optimum Re while above that, Ns increases for all the tube banks. At
b=2.0 and a=1.25, 1.5, 2.0 & 2.5, the higher performance for tube bank of a=2.5. But
at a=2.0 and b=].25, 1.5 & 2.0, the higher performance for tube bank of b=1.25,
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|

a relative transverse pitch

b relative longitudinal pitch

C capacity rate m Cp (W / K)

Cp  specific heat at constant pressure (J / Kg K)

Eu Euler number

G exchanger mass velocity based on the minimum free-flow area in the

core (Kg/m?s)
h convective heat transfer coefficient (W / m? K)
m mass flow rate (Kg/s)

Ns entropy generation number due to AP and AT

Ny entropy generation number due to heat transfer with temperature
difference, AT

Nep entropy generation number due to pressure drop, AP

Nu  Nusselt number based on actual heat transfer area

NTU number of transfer unit

P pressure (N / m?)

AP  pressure drop (N / m?)

Pr Prandtl number

Q heat transfer interaction (W)

Re  Reynolds number

S s €ntropy generation due to fluid friction (W / K)
S, ar entropy generation due to heat transfer (W / K)
St Stanton number

u velocity in minimum free flow area (m/s)

v specific volume ( m¥/ Kg)

z total number of rows in the heat exchanger

E

volumetric expansion coefTicient

absolute inlet temperature ratio (Tci / Thi)
capacity ratio ( Cpyin / Cinax)

heat exchanger effectiveness ( Qach! Q
irreversibility distribution ratio ( Ns;p/ Ns,t)
dynamic viscosity (N-S / m?)

kinamatic viscosity (m?/ s)

fluid density (Kg / m?)

VTYXEHS®p AT

E

air

cold stream
hot stream
inner, inlet
outside, outlet

o = rom
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