Menofiya University

Faculty of Engineering Shibien El-Kom

Department of Basic Eng. Sciences.

2<sup>nd</sup> Semester Exam., 2016-2017

Date of Exam.: 10/6/2017



Subject: Eng. Mathematics

Code: BES 712 Year : Grade 700

Time allowed: 3 hrs. Total marks: 100 marks

## Answer all the following questions

## Question(1) [25 marks]

a) If  $f(z)=e^z$ , use the change of variables to show that  $\int_c f(z)dz = \int_{c'} dw$ , and if c is the

straight line x=0 in the z-plane, show that c is mapped into the unit circle c' in  $t^{k_2}$  w-plane. Deduce the integral and check your result.

b) Using Chayley Hamilton theorem solve and check the system of equations

$$3x^2+2y^2+z^2=20$$

$$2x^2+4y^2-z^2=9$$

$$x^2 - 5y^2 + 3z^2 = 8$$

c) Using the complex variables solve and check the system of equations

$$x^2 - y^2 - 3x - 2y + 5 = 0$$

$$2xy+2x-3y-1=0$$

Determine the geometric interpretation of the system of equations with its solution.

# Gestion (2) [25 marks]

a) Use Fourier expansion for the function  $f(x) = \begin{cases} -a, & -\pi < x < 0 \\ a, & 0 < x < \pi \end{cases}$  to show that

$$\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots = \frac{\pi}{4}, \ \ 0 < x < \pi$$

b) Classify the equation y[n+2]- 4y[n]=0. Using z-transform method solve and check this equation with the initial conditions  $y_0=1$ ,  $y_1=2$ .

c) Test the validity of the relations:  $\widetilde{a}b = \widetilde{b}a$ ,  $(\widetilde{a}b) = ba^{T} - ab^{T}$ ,  $(a+b) = \widetilde{a} + \widetilde{b}$  with the two vectors  $\mathbf{a} = [-2, 1, -3]^{T}$  and  $\mathbf{b} = [1, -2, 4]^{T}$ .

#### Question (3) [25 marks]

a) Use Fourier transform to solve the wave equation in an infinite domain

$$\frac{\partial^{2} u}{\partial t^{2}} = a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \qquad -\infty < x < \infty, t > 0$$

$$u(x,t) \to 0 \qquad \text{as} \qquad x \to \begin{cases} \infty \\ -\infty \end{cases}$$

$$u(x,0) = f(x) \quad \text{and} \quad \frac{\partial u(x,0)}{\partial t} = 0 \quad \text{for } -\infty < x < \infty$$

- b) Construct the trigonometric interpolating polynomial of degree four in the interval  $[-\pi,\pi]$  for the function  $f(x) = \pi(x \pi)$  using
  - i) Direct Calculations

ii) Fast Fourier transform

### Question (4) [25 marks]

- a) i) Define the tensor, rank of tensor and give an example.
  - ii) Compare between covariant tensor and contra-variant tensor.
  - iii) If  $u = (T^i)$  is a contra-variant 1st order tensor, show that the partial

derivatives  $T_j^i = \frac{\partial T^i}{\partial x^j}$  defined in each coordinate system according to the

$$rule \quad \overline{T}_{j}^{i} = T_{s}^{r} \frac{\partial \overline{x}^{i}}{\partial x^{r}} \frac{\partial x^{s}}{\partial \overline{x}^{j}} + T_{r} \frac{\partial^{2} \overline{x}^{i}}{\partial x^{r} \partial x^{s}} \frac{\partial x^{s}}{\partial \overline{x}^{j}}$$

c) Solve the elliptic partial differential equations equation  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ 

at pivotal points of the following square mesh to 3 decimal places.



| Question Number | Q1-a                            | Q1-b | Q3-b | Q2-b                | Q4-a | Q1-c | Q2-c | Q4-b | Q3-a | Q2-a |
|-----------------|---------------------------------|------|------|---------------------|------|------|------|------|------|------|
| Skills          |                                 |      |      |                     |      |      |      |      |      |      |
| DRIIIs          | Knowledge &understanding skills |      |      | Professional Skills |      |      |      |      |      |      |