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ABSTRACT

The flow of a viscoelastic fluid of grade two which performs a
combined Poiseuille -Couette flow in the annular region between two
eccemric tubes is investigated . A concised review of the first -order
solution (3,7) is given in order to form a suitable basis for the present

calculation.

The results of the present work suggests a major modification of
the eccentric-cylinder rheometer (1) which is based on the pure
Couertte flow. From the practical point of view , a rheometer based
on the combined Poiseuille-Couette flow can be realized and is

expected to give more information than the present one.

Key words : Viscoelastic fluid, Eccentric tubes ,Poiseuille -

Couerte flow , Secondary flow.

1. INTRODUCTION

In an extensive theoretical study of the steady state motion of a
fluid of grade two in the annular region between two eccentric tubes,
the velocity field due to superposition of rectilinear shearing, Poiseuille

and Couette flow is investigated (3,7).The calculations are carried out
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within the limit of the retarded motion expansion (4). Up to the first-
order (viscous or Navier-Stokes fluid), the three motions create three
independent contributions; namelyW,, (¢,7) for simple shearing,
Wy, 61 for Poiseuille flow and uw,(&m) for Couette flow.
Provided each of the afore-mentioned three motions is considered
separately, the velocity field for a fluid of grade two coincides with that
of the Navier-Stokes fluid. However, if any of the two axial motions is

superimposed on the Couette flow, a second-order contribtion
W, (&, 77) takes place. This second-order term results as an interaction

between axial and rotational flow. The second-order term W, ( &, 77) is
already calculated (3,7) for the combination of simple shearing and

Couette flow: i.e. for the so called helical flow.

In the work (3,7), the authers suggested the application of this
boundary value problem for the construction of arheometer which
allows the determination of some of the second-order (elastic)

constants besides the first-order (Newtonian) viscosity.

This suggestion is realized partially in a very important and
fundamental contribution to Rheometry (1,2). In this work a
rheometer, termed a new eccentric cylinder rheometer, is constructed
on the basis of the pure Couette flow. The authers corrected the stream
function for the first order Couette flow given in (3,7).4 They showed
that the rheometer is capable of determining the shear viscosity u and
the second- order elastic constant ¢, in a convenient way and only by
one and the same set up. Due to the impossibility ofrealizing the
combination of simple shearing and Couette flow, a further
development of the eccentric cylinder rheometer is not possible.
However, the combined Poiseuille-Couette flow is much easier to be

realized. Hence, the aim of the present work is to determine the
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second order velocity field W,({ 7)) hen Poiseuille flow is

superimposed on Couette flow.

- 2. Formulation Of The Problem

The fluid of grade two is assumed to perform isochoric and
steady motion in the annular region between two eccentric cylinders of
radii R, ,R, (R, <R,) and ofinfinite lengths . The two axis of
the cylinders stand parallel to each other and tothe Xs - axis. The
geometry of the problem suggests the use of cylindrical bipolar
coordinates £, 77,2). This system of coordinates is generated from the
rectangular system of coordinates (X,,X,,X,) by the conformal

transformation ( 5).
W=2th"zlc  Z=X3 , )
where
“W=¢+17 adZ=x,+¥x,. Eq (1)isequivalent to the real

transformation

*,=hshd L 4= Xm"[ﬂ———:}

S Hxt+xl

X\z‘i\ smn S 772“&\_\{_?_?_6%\:___?}
M Sliadh 94

X, =12 . Z= K, , 2)

where Y= cf(ch {+cos7) s the scale factor for the bipolar

coordinates. The cross-section of the flow region is shown in Fig (1)
where ¢ and ¢, represent the cross-sections of the inner and outer

cylinders; respectively .
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The first-order velocity field calculated in ( 3,7 )is given by the
expression ,
N=7\W, + W, +u,(6m, ()

where the three contributions W,;, W, and u, are explained as follows

(1) The simple shearing created by the axial sliding of the inner
tube with constant velocity W, Zinduces a velocity field given by

Wag = W, 200w @

(1) The Poiseuille flow due to the constant pressure gradient "a"
in the axial direction creates the velocity field

2 |67 ¢ ~¢ N
A_23C =& 2 \ 4
W Z= 7 coth {\ + cohf ——m—+
\p ;\ —4‘1 _[\ —gz chd+cos g
0 '2.&—\3“ <Os 177 ““(1
+ 2 coth 4\& s‘nn&é’—g‘v\
amy SR :

: -n¢ 7 o
+coth ;’le 2aan( e -6 +ola™y
A

(57

(iii) The Couette flow due to the rotation of the inner tube about its

own axis with constant angular velocityir £ is given by

= -ZAV W, = ‘“_\\‘;l//\‘,, - ;71//\,;\» (6a)

* The {inal solution Wy p given in (3.7) includes a mistake which is corrected here
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Where

= QG MY AL - s sl -

=6 - T ATAE XE
cos 77 |
m\(f“ £, s - bl 4 ~sn( - &Y
+Q(a1) (6b)
rwhere

shochg +ochd, N c(2

osho Qsh 4’}

A={sh* -6\

The rate offlow, c Q, about the inner tube calculated per unit length
is related to the angular velocity Q by the relation

e (deho-shd) (dhg, —shd shd))

- 6-
Q= S R o oo dm s m A rmomas &9

where 6=¢, - ¢, and o= ¢, +,.

The equation determining the second - order solution is the
Poisson equation given by

+ . , T
DBV Vwy, (Vi +(Te ) =0,

Viw, +
)7

Q .G
o]

where w, is the rotational flow defined by Eqs . ( 6a - 6¢ ) and

W is ,in the present case , the Poiseuille flow defined by Eq (5) .

The constants p, c«; and o, are the viscosity and the second -

order material coeflicients according to the constitutive equation
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T=-Pl+uh +a A +%§32\3\’ (82)

where
A =Vy, +(Vy,) (8b)

and

b,

DA, 1
= DT& +VE\-E__\\ +£;\~KVE\3 (8¢c)

In Eq .(8a) X is the stress tensor ,P is the hydrostatic pressure
. . . . 1
and Y is the unit tensor . It is obvious that &, 2034 " are second -order
terms in the velocity field.

7 Eq (7) implies that W, is, as mentioned before different from
zero only; if both W and ., are different from zero.

3. Solution of the problem

The solution given in (3,7 ) for the case of helical flow was
performed in terms of the proper Green function, the simplicity of the
density function left the integration over the Green function within
tractable [imits. However, the  density  function
v. {vW,[Vu, + (Vu,)]} with W, given by Eq .(5) is so
complicated that the integration process is associated with serious
difficulties. Fortunately, a close investigation of the density function

shows that a solution for Eq . (7) can be obtained directly .
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Consider,

VAVWLLVa, +(V20)7)Y

=V.LVW,.Vy, +Va,. VW
=V.IV(2,. VW )-u,.VVW, + V. Vy,}

=V [ u,.VW, )= Vu, - VVW, —u,.V( VW, )
LYYW, 1V, + VW, V( V.1, )

=V (1, VW, ). (9)

Since y. w, =9 by the equation of continuity and
b, VAV*W, )= 1,.V(~-£)=0. Substituting from Eq (9) into

Eq. (7) we obtain the following equation

V"‘[Wl+a‘+al\_l\-v‘”\]:g: _ (10)
H
which has the solution .
+a
W, =-2"% p Ly, Ve, + W,

where W,‘™is the solution of the Laplace equation V* W, =0,
Since w,.V'W, satisfies the boundary conditions, then W,‘™is

equal to zero. Hence,

W, =-51%h v,

)7
a +a,, -
T \,U - \&“\;W\.;'F“\nw\.n\‘ (0
- andu,, are to be calculated from v,Eq (6b), and

W, - and W, are to be caleulated from Wy, ; Eq. (5).
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Therefore,
= Q% o AT S N S Sl N = el O
W= P AWEG ~gysa 8 snl -y - A E= 40 - O

ch &, 3 N i
A U L ST
h (6 - ) Sh -4 (122
A A
L CTE AR Y PEra)

Y Sh(g_é,l)+c‘:\(a—?_§j—c‘n5
Sshé 5¢h 6-hé

L(he, i L& Yeos TS — &) ho
FET5 gy - (he el ~ D)o HENL-G)

cOs 773

oho
shéeos 77 B -
=m0V -G OGN (2

—actht | e -l shgceos 7 = 20(-\)" sm 7
W= - = + —+ Z
= L o (hd+cos )y . shnd

Letd e ™ e ¢~ & Y- eldie ™ e 4 - OV J : (1\20)

~ -ac’m-\[ ddsin S 2n(-V) s g

R A 1 (he+cos 7Y f‘j\ shnd
et e ™ sl &4, ) - e, e ™ 4 - J . \24)

Substituting Eqs (12a) - (12d) into Eq (11) we get the proper
expression for W, (£, 7)
This expression is quite complicated. The construction of
rheometers is frequently done for narrow annular width. Thus the
previous expressions will be approximated for the case

6=¢, — & << ¢, Moreover, the change of variables
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= g'é"z

Yy 5

shows to be useful , because it reduces the range
¢, <4<¢ w0y <)

Substituting the last transformation into Eq (12a) we get

‘= 9_‘(_\_%\_“_775\5/\\(\—-\]§s‘(\5 hiy - dyshd (L -vH))

' 0oy ng

+ —
o o nd-snho

Loyehd -cd (L-y)sh oyl

Expanding the hyperbolic functions in terms of power series, and
neglecting terms of O (& *) relative to one, then

_ QY MY -Y) . Q _
u,,= sin q':———Qs‘n; +2(\ y\shé’l:,

\¢
< \

. \ \
With v, = N Aan y= NE (14a)

and Eq. ( 12b) reduces to

<hd
)

______6“(;” cos 77} — (G0, +6hd yoos m%w (3-2¥)sh¢ cosr),
R

Qlg, 1
w'\t‘\\\\w:{ 9‘} a&y={ } (140)

- ﬁ‘.\%ﬁlmmm m\%ﬁ&sv—n—

in

\ Q
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In the same manner where coth ¢ is expanded according to the

relation,

oy
h C=coth( & +5 y)=coth & — ,
coth £=co &47_ ¥)=co (l 5

h
s{l

which on substitution into Eq. (5) leads to

2 a U n_ -0y
W, = 35(‘,2 > A-A)y'e 1y e ™ #shnd - e ™ *shndy | cos 0y
PN7EN et sond

. A A \
wihh w, = 0} R y= of (152)

Therefore

,ac'l 2 K_\Bt\ Q:“CI .
W, ,= 1-aN) T shnd
TR “2_;( shnd L =ndn)

-nd e’y \cosn7.

1
WﬂﬂMgiﬁmy=£}, (13%)
and
W, = -%9%¢ STaA) My @Y shad

.7 3
JUSX\ ;7_ a=1

- shndy \smn 7y
(15¢)

, 0 \
with W, 2{0} a y = {Q} .

Substituting by Eqs.(1-4a),(14b),(15b) and ( 15¢)into Eq. (11),

the approximated form of W5, is given by
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) ehd +eh g,
W, = - A% +0i1\ QWZ&—U“ ey (L-¥) 6 cQ
M sh é;_ a=1 *
Qshg

ehd -(3-2y)ehd e (1-ndy)-nd e ’coth ndy

1\ . e g,
) shé

ysinzcosnz - (& eh ¢ + cos 77)[3";\&

e ehZ 6(y-\ ne
+Qs\\g'\ Y- 5- — WJ ) eos 77 J -(eh g, +ehd yeos 7733\%
Ty (3-2y)shccos 7 (‘J gnoy o SNROY )né‘ sinn 7

shnd
. Q 1
WO T Y T o (16)

DISCUSSION

Figure (2) shows the dependence of the normalized second -

order velocity field,

.. -1 \N
Wi=—FET g
al a, +a,)Qc
as function of the coordinate y , whereas the coordinate 7 surves as a

parameter . The constants in  Eq (16) are set
¢ =11, & =\ e §=0.\ . Figure (2) reveals that W possesses

complicated behavior which will be discussed in the following points :
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(1)Eq. (16 ) shows that
WoY,9) = WI(y,7) =0 suchthat W, =0
on the line of centers of the two cylinders.
(i) The analysis of the curves start at y =0 ; i. e., at the wall of

the rotating inner cylinder. The curve representing W, (y,7/4)

describes the second - order velocity on a line which crosses the
annular width in the narrow region. On this curve W, increases in

magnitude with negative values up to a minimum at y =0.15 then goes
to zero at y ~0.43 . Thus, in the interval 0<y< 0.43 , W, (y,7/4)

opposes the primary flow and slows down the velocity of the fluid. On
the other hand , in the region 0.43<y<1, W. (v, #/&)) is positive with
a maximum at y~ 0.65. In this interval the resultant axial velocity is
greater than the primary flow alone .

(iii) The curve W,(vy,7{2)  which still lies in the narrower
region of the annular width shows the same behavior at the previous
curve. However,| W;{(vy,7/2) | < ] WI(y,7l4) |onthe whole
interval 0<y<1 except in the small intertval 0.375 <y <0.45 as W, —0
and in the interval 0.8<y<1.

(iv ) The curve W, (y,37/&), which lies in the wider region of
the annular width, shows different behavior. Within the interval
0<y<0.24 W, { y,>7/4Y) is positive with maximum aty &0.1, such
that the resultant axial velocity is greater than the primary velocity W, .
In the middle region 0.24<y<0.85, W, (y,37/4)is negative with
minimum at yR0.53 . The motion of the fluid in this region is slower

than the primary motion. Finally . in the interval 0.85<y<1,
W, (¥, dl4)is positive with maximum at y=0.92. This behavior

shows that the velocity distribution tends to be flatter than the
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distribution of the primary axial velocity.

(v) Close investigation of the construction of the eccentric
cylinder rheometer (1,6) shows that its modification to include the
Poiseuille axial flow is quite possible . However , to get the practical
formulas to be applied in this case a careful calculation of the surface
tractions, forces and torques at the wall of the outer cylinder is
necessary . These calculations will be the subject of a further work.
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e=const.
Fig. (1) . The cross-section of the annular region between
two eccentric pipes in the X, xz—plane, including

a map of the bipolar coordinates in the plane.
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