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ABSTRACT:

The objective of this study is to develop a vertically integrated two dimensional numerical sediment
transport model. This model is divided in two parts: hydrodynamic modeling and sediment transport
modeling. Hydrodynamic modeling simulates flow velocities which are then used in the sediment
transport model to simulate sediment concentrations, To represent the sediment transport system in a
flow, the conservative form of two dimensional advection diffusion equation is used. To solve this
equation a fractional step method, also known as standard split approach (Sobey 1983, Dragsolav 2001),
is used. This approach splits the advection diffusion equation in two parts: advection and diffusion,
which are solved separately. To solve the advection part, a high resolution conservative algorithm for
advection in incompressible flow developed by Leveque (1996) is used. To solve the diffusion part, a
semi-implicit finite difference scheme is used.

1.INTRODUCTION:

The oldest known sediment transport study was
done around 4000 years ago in China, Fig. 1. (Al-
Khalif, 1965) A significant work has been done in
the last century in the field of sediment transport.
All the studies can be classified in two broad
categories: physical and mathematical.
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Fig.1: Schematic diagram for different modes of
sediment transport (After Al-Khalif, 1965)

Physical studies are done by doing experiments in
laboratory flumes or by taking field observations.
Laboratory studies are not well representative of
the river system as it is difficult to represent a
river by a laboratory flume. So a lot of
assumptions are wusually incorporated in
laboratory studies. Still these laboratory studies
are important for verification of other studies and
also to understand basic concepts of river flow
and sediment transport. One of the oldest and still
widely used studies was done by Newton (1951).
Also, Bhamidipaty (1971) did extensive
laboratory flume studies for three different
sediment particle sizes using uniform sediment
grain size for each experimental run.

Normally, analytical solutions are developed in
those cases where flow conditions are very
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simplified and can be lumped in one or two
directions. It is difficult to develop analytical
solutions for generalized two or three dimensional
cases with complex conditions, Still analytical
solutions are important to verify the numerical
model as it is very difficult to obtain experimental
data for many conditions. Some of the well known
analytical sediment models are summarized
below. One of the oldest models was developed by
Tinney (1955). Al-Khalif (1965) used the Einstein
(1950) approach to develop a bed load function for
a degrading channel and used that function to
describe degradation. De Vries (1973) used
convection-acceleration and depth gradient terms
and developed a linear hyperbolic bed elevation
change model. Jaramillo (1983) solved the linear
parabolic sediment transport model to estimate
bed load discharge for a semi-infinite and finite
domain. He estimated the bed elevation using the
expression of bed load discharge rate and
sediment continuity equation. Gill (1983)
developed a model to simulate the bed change in
both aggradation and degradation using a linear
parabolic bed elevation analytical model for a
finite length channel. Jaramillo and Jain (1984)
developed a nonlinear parabolic sediment model
without considering -flow non-uniformities. Jain
(1985) used the method of weighted residuals to
solve a nonlinear parabolic aggradation model.
:Zhang and Kahawita' (1987) solved a nonlinear
parabolic aggradation model and showed that bed
elevation is a function of square root of time.
Mosconi- (1988) -developed two different models
separately for aggradation and degradation
processes. He developed a linear hyperbolic
analytical model for aggradation in the case of
increase of sediment -discharge and nonlinear
parabolic analytical model for degradation in the
case of reduction of sediment discharge.

All analytical mathematical models of sediment
transport phenomena developed are based on the
assumption of steady state or quasi steady state
water flow, as unsteady state of water flow makes
the system complex and it is difficult to develop
an analytical solution for that complex system.
This assumption is mormally not valid in real life
problems. To overcome this limitation
investigators developed numerical methods to
solve sediment transport equations in complex
situations. This approach is further encouraged by
advancement in the field of computers as these

methods nced enormous computation. Till now
many numerical sediment transport models have
been developed. All numerical models developed
so far can be divided in three categories according
to dimensions in one dimensional, two
dimensional and three dimensional models. Some
of the widely known and used numerical models
are listed below.

In one dimensional sediment transport modeling
concentration is averaged in lateral and vertical
directions. This is the simplest mode of sediment
transport modeling as it involves equations only
in one direction. It is easy to implement this
approach as analytical solutions can be developed
casily for one dimensional differential equations,
but this approach cannot be implemented in the
case where longitudinal or vertical flow is also
important.

In two dimensional sediment transport model
sediment concentration is averaged in one
direction, normally in vertical direction
depending upon the flow characteristics and ficld
requirements. Based on ‘this integration two
dimensional models can be classified as depth
integrated and laterally integrated two
dimensional models. In depth integrated models
all thc model parameters and variables are
assumed to be the same throughout a water
column. Application of two dimensional models
is more complicated as compared to one
dimensional models as this approach needs more
resources in all aspects. Two dimensional models
are most popular models than others as they
provide enough information of the desired
quantity for the project requirement in optimum
resources.

Some of the two dimensional models developed
so far are described in the next section. Struiksma
(1985) developed a two dimensional sediment
transport model to simulate the large scale bed
change at Delft Hydraulics. Shimizu and Itakura
(1989) developed a two dimensional bed load
transport model for alluvial channels. Chaudhary
(1996) developed a two dimensional bed load
sediment transport model for straight and
meandering channels. Some of the widely used
two dimensional sediment transport models are
MIKE21 (DHI 2003), TABS-MD (Thomas and
McAunally, 1990), CCHE2D (Wu W., 2001) and
HSCTM2D (Hayter, 1995). One of the most
popular sediment transport models is CCHE2D
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scdiment transport model (Wu, 2001) developed at
the National Center for Computational
Hydroscience and Engineering, University of
Mississippi. The CCHE2D model has a non
equilibrium sediment transport model for
suspended load and an equilibrium sediment
transport model for bed load. The CCHE2D model
is capable of taking account of non-uniform
sediment mixtures with many size classes. In the
CCHE2D model an exponential difference scheme
is used to solve the suspended sediment transport
equation and first order upwind scheme is used to
solve the bed load transport equation. HSCTM2D
(Hydrodynamic, Sediment and Contaminant
Transport Model) model was developed for U.S.
Environmental Protection Agency. It is a finite
element two dimensional, vertically integrated
model for cohesive sediments. HSCTM2D is
composed of two parts. The first is hydrodynamic
modelling part named as HYDRO2D and second
is contaminant and sediment transport modelling
part known as CS2D. HSCTM2D can be used for
both short term and long term simulations.

Three dimensional sediment transport models are
most informative as they include all the space
dimensions. They are most complicated and
resource consuming in implementation. Three
dimensional models are avoided until very
detailed distribution of desired quantity needs to
be simulated .and flow. characteristics are
important in all directions. Three dimensional
models are mostly applied in the condition when
flow is stratified like flow of fresh water over salt
‘water'or flow of warm water over cold water.
:Many researchers have developed three
‘dimensional- models till now. Wang and Adeff
(1986) developed a three dimensional finite
clement model for unsteady flow. Demuren and
Rodi (1986) developed a three dimensional flow
and neutral tracer transport model. Van Rijn
(1987) combined three dimensional sediment
transport model and two dimensional depth
integrated flow model. Lin and Falconer (1996)
developed a three dimensional model for estuaries
and coasts.

2- MATHEMATICAL STUDIES

Physical studies have the limitations due to the
complexity of representing a real life river

C. 14

conditions through an experimental flume. Due to
this restriction, investigators made many
assumptions during the experimental runs
according to the requirement of the study. These
assumptions limited the scope of these studies to
apply them to real life problems.

To overcome this problem many investigators
developed mathematical equations and their
solutions to represent the sediment transport
concepts in real life situations. All the
mathematical models developed so far are based
on the following five basic equations. These
equations are written only in one dimension and
can be extended for all three dimensions.

(1) Continuity equation for water flow
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where;

Q = discharge

A = cross-section area

x = x-direction, t = time

(2) Momentum equation for water flow
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where;
g = gravitational acceleration
z = flow depth

(3) Flow resistance equation
U=as’ (3)

where;
g, b = parameters
S =bed slope

(4) Continuity equation for sediment

1 oG _
ot 1-Aox
where;

A = porosity of sediment mixture
G = sediment transport rate

0.0 @)

(5) Sediment transport capacity equation
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G=cU*

where;
¢, d = parameters
U = mean flow velocity

8))

3- ADVECTION-DIFFUSION EQUATION

The advection diffusion equation could be given
&_{_ O(uc, ) N d(vc,) N d(we,) d(wsc,) _

ot ax oy oz o0z
_fi[kﬁ& 22 % +£[ 5&]

ox ox ) oy oy ) oz oz

(6)

In which;
Ci = sediment concentration at any point;
w = flow velocity in z-direction;
w; = settling velocity;
k, = diffusion coefficient in x-direction;
k, = diffusion cocfficient in y-direction; and
k., = diffusion coefficient in z-direction.

Equation 6 can be converted in a pure advection
system by neglecting the diffusion part and can be
written as:

Oc, |, Oluc,) | 8(ve,) | O(wey) O(wsc,)

. : -+ - =0.0
ot Ox dy oz 0z

™)
Equation 6 can be -converted in a pure diffusion
system by neglectmg the advection part and can be
-written as:

Ox Ox oy ’ oy oz *
(8)

To convert the three dimensional Equation 6 into a
two dimensional depth averaged equation, the
depth averaged suspended load concentration is
defined as:

ai] =0.0
o

®)

Integrating the threc-dimensional advection-
diffusion Equation 6 over the suspended load
Zone,

F O, P Buc,) P dlwe,) b Blwcy)
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Integration of Equation 10 over the entire flow
depth gives the following depth averaged two
dimensional advection-diffusion equation:
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where; U and V are the depth averaged flow
velocities in the X and Y, directions respectively;
and E, and D, are erosion and deposition terms in
upward and downward directions, respectively,
and together known as source-sink term in the
advection-diffusion equation. The source-sink

-term can be calculated as:

S, =E, -D, =aw,(c, *—,) (12)
where S, = the source sink term for specified
sediment size, o is the non equilibrium adaptation
coefficient, w, is the sediment particle settling
velocity, and ¢;* is the depth averaged sediment
concentration under equilibrium condition or
sediment transport capacity.

As the depth of the bed load zone is small
compared to the flow depth & << A, Equation 11
can be simplified as follows:

Ohe, , 0(Uhc,) , 8(Vhey) _
ot ox ay

3[1:,}:6& + 2 e n%e sk, -,
ox ox ) oy\ 7 oy

(13)
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4- FRACTIONAL STEP APPROACH

To solve Equation 13, a fractional step approach,
also known as standard split approach (Sobey
1983), is used. In this approach both advection and
diffusion parts of the advection diffusion equation
are solved separately at each time step. Using a
splitting approach very accurate numerical
procedure can be used to solve advection and
diffusion separately. A questionable part of this
approach is that advection and diffusion parts are
solved one afier another, which makes them
discrete, but in real life they occur simultaneously.
This step introduces a splitting error in the
solution irrespective of the accuracy of the
schemes used to solve the advection and diffusion
parts. However the magnitude of error is very less.
This approach can be justified on the grounds that
better and more accurate methods can be
implemented for separate solutions of advection
and diffusion parts. The fraction step method
procedure is explained below. In general an
advection diffusion transport equation can be
written as:

8c
—+L,(c)-L;(c)=0.0
o T (€)= Ly(c)

(14)
where Ld{c) is the advection part and La (c) is the
diffusion part including all source-sink terms.
Equation 14 can be written using the Taylor series
expansion for a nth time step as:

i-H_ »
T L)L) =
o%c™ At

— Ferrrrnrenaee =0{Ar
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(15)

Now introducing the fraction step approach and an
intermediate variable ¢’, advection and diffusion
parts can be written separately as:

c'—c" oc" At
+L (c")= —F rrerens =0(As 16
At (c™) a7 2 oar)  (16)
¢ (c")=0.0 (17)
At 4 '
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Equation 16 is a pure advection equation and so is
Equation 17. Both of these equations can be
solved separately. The fraction-step procedure is
independent of the scheme used for advection and
diffusion parts. Numerical schemes used to solve
for the advection and diffusion parts of the
advection diffusion sediment transport equation
are described below. Discretization of velocity,
water depth and sediment concentration over the
space is shown in Fig. 2.
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Fig. 2: Discretization of concentration and
velocity field in solution domain

5- ADVECTION PART

High resolution conservative algorithm for
advection in incompressible flows developed by
Leveque (1996) was used for solving the
advection part. Leveque uses basic upwind
method and proposed several correction terms to
achieve better accuracy and stability. A
conservative form of advection of a scalar
concentration or density function C(x,t) can be
written in general as:

¢, +V.(uc)=0.0 . (18)
Assuming flow is incompressible
Va(xt) = 0.0 (19)

From the generalized advection equation, two-
dimensional advection equation can be written as:
¢, +(cu), +(cv) , =0.0 (20)



C.17 Mohammed Gamal Abd Alla
and assuming flow is incompressible

u; (x, ¥, t) + vy (x, y, t) =0.0 for all x,y,t (21)
For incompressibility in discrete form for every
cell in the discretized domain the following
condition should satisfy:

(Ui-i-],ll o+l —Uu :|'|+l) + (vl‘rl-l n+l'V|J n+l) =0.0 (22)
To solve this conservative form of the advection
equation Leveque (1996) used a basic upwind
method in the flux differencing and later added
correction terms to achieve better accuracy and

stability. The upwind method is based on the flux’

calculation of the concentration at the cell
interfaces and can be written as:

C, n+l — C"jn+1 ‘"%[F

i+,

-F;+G ,+1-G;;
(23)

W

where Fi; j represents the flux at the left interface
of the cell Ci;j and Fi+1;j represents the flux at the
right interface of the cell Ci; j. Similarly Gi; j
represents the flux at the bottom interface of the
cell. Ci; j and G#+1; j represent the flux at the top
interface of the cell Ci; ;. Fig. 3 shows the location
of flux for a cell.

Vil j Gi+lj
X Uij Uirlyj Cl+l
Ci1] oy CLj Fitly |
‘ Vij , Gij

Fig. 3: Representation of flux for a cell

These fluxes at the cell interfaces can be
calculated as:
Fi.j - vi'jn-rl . C,-_l,jn
G.l,j = vun+l -C,-_j_lu
(24)

In this whole section, u and v are taken positive in
the X and Y directions, respectively, and all the

derivations are done by assuming that u and v are

- positive. In reality the directions of these fluxes at

the interfaces depend upon the direction of the
respective velocity vector. Thus Equation 23 can
be rewritten as:

u+l ] atl n
c ™_c ™ k|l Ciy 4, C.y;
WoooT R T atl o wtl n
MN+vim Gy vy G
(25)

In this upwind method it is assumed that waves
carrying differences (Ci; ; ;Cij1; ) and (Ci; ; ; Ci; ji1)
propagate perpendicular to the interfaces in the X
and Y directions, respectively, at the speeds and
directions given by velocities u and v. This
function can be achieved by using the wave
propagation method assuming the above specified
condition. In case of wave speed (u, v) in the grid
oblique to the interfaces a proper correction factor
should be implemented. This correction can be
incorporated by a two step procedure. In the first
step the same upwind method is used in which
wave is propagated perpendicular to the interface
and in the next step the rcmaining triangular part
of the wave is used to update the flux between the

cells due to its transverse motion. The area of the

triangular part of the wave is 0.5k%uv and due to
this the cell average is modified by the value of
05(k*h®) wvAc. In this quantity Ac is the
difference across the wave. This modification can
be incorporated in the flux calculation of Fi j and
Gi; j as follows. For wave propagating,

F,=F,; "'":,JM r—1,1”
1 k n n
Gi,]-H = Gi,j+l _E;"-V(Cu -Ci—l,j )
G,=G;, "'V:,jHlCr._;-l.
1% . "
Fm._; = F.'+|,j _EI"V(C.-J _Cf.j—l ) (26)

The other k/h term is incorporated in the flux
differencing expression. This updated form of the
upwind method which includes the transverse
wave propagation is more stable and accurate
than the original version of the upwind method
specified in Equation 24. This improved first
order accurate method is komown as the coner
transport upwind method developed by Collela
(1990).
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To achieve second order accuracy in the
algorithm, a second order Lax-Wendroff method
is combined with the upgraded upwind method.
The Lax-Wendroff method to calculate flux can be
expressed as:

Fua™ =5 u(Ciy + €)= (€= C) @1)

i-bj

The Lax-Wendroff scheme can also be rearranged
as a combination of upwind method and a
correction term as:

1 k
F},j—lw =u,C., +‘2“|“|[1 —;M}(C. -C)

1 k
B +E|ut{1—;|u|)(c, _C.,) @28

6- DIFFUSION PART

To solve for the diffusion part of the advection
diffusion sediment transport equation, a semi-
implicit finite difference scheme is used. The
semi-implicit finite difference scheme is
implemented in such a way that it can easily be
converted to a completely explicit or completely
implicit scheme. A finite difference representation
of the diffusion part can be written as follows:

dch 0O dc,| o dc .
oA e n S| e n L |ys, (o
ar ax[‘.ax}ay{’ @»J+ e @

where; Sy is the source-sink term, and &x and &y are
the diffusitivity coefficient in X and Y directions,
respectively. Now the above equation can be
solved for time steps Af using an explicit finite
difference scheme. In the following solution
superscript n represents the nth time step.
Introducing a new variable A, Equation 29 can be
rewritten as follows:

— 30
ot ox oy’ (30)
where;
de
4, =K.fl5x- (31)
de
4, =Ky.h5 (32)
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Now, writing the finite difference of Equation 30

C" —C)' _ Axi+L)—AxG,)) ,
At Ax
Ay(i,j +1) - AyG, )
Ay

(33)

Here, Ax (i,j) and Ay (i,j) can be calculated as:

ol €l N-C™ (-1, ))
Ax

ca _a)[C'(i.j)—C'(l'— l,.i)]

Ax
G4

Az (i, j) = Kx (i, j).h(, J)

6 CnoI("j)_C-d(“j_l)
Ay

+a-a)[C‘(f.j) SR l)]

Ay (i, J) = Ky (i, j)-h(i, J)

(35)

Czu2(, ).C*M (i +1, )+ Czul(i, H.C* (i -1, j)+
Czv2(i, ).C*' (i, j + 1)+ C2vl(i, /).C* (i, j - 1) -
C™' (i, /) =b(i, J)

(36)
where;

Czu2(i, j) = coefficient of Cn+1(i+1, j)
Czl (i, j) = coefficient of Crt1(1, j-1)
Czv2(i, j) = coeflicient of Cn+i1(i, /+1)
Czv1(i, j) = coefficient of Cn+1(i, j-1)
b (i, j) = the known terms

Equation 36 can be represented as Ax = b, as it
represents a linear system of equations. To solve
for the diffusion term, this linear system of
equations needs to be solved. To that end, the
following numerical schemes was used.

e Jacobi
e Red black gauss siedel
e Successive over relaxation (SOR)
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7. SOLVER FOR LINEAR SYSTEMS OF
EQUATIONS

o For Jacobi Method

A linear system of equations generated from
partial differential equations can be solved by
using the Jacobi method, which can be written as:

ntl 1 " n it n
u,; = Z[u!—l,j tuy, ;o vy, tu g, ] 37

where u” ;; denotes the nth iterative value of u ;; .
Iteration error for the whole grid can be calculated
as:

Error= E (abs(u, JH -u,,")")

(38)

s For Red Black Gauss Seidel Method

The Red Black Gauss Seidel Method is derived
from the Gauss Seidel Method. The Gauss Seidel
method iterative formula can be written as:

”um =% “i-l,jm "‘!‘m,,"r +“:,1-|Hl +“1,1+1"] (39)
The difference between Gauss Seidel and Jacobi
method is that this method uses the latest iterative
values available for the grid points, while the
Jacobi method uses only old iterative values for all
points. Due to this change, the Gauss Seidel
method convergence increases many times more
than the Jacobi method. The Red Black Gauss
Seidel is a modification of the Gauss Secidel
method.

o For Successive Over-relaxation (SOR)
Method

Successive over-relaxation method can be written
as:

n+l " n+l
ntl w1 By Ty gy
u;, =(l—a1)uu +Zm

n
tu;

(40)

The rate of convergence of the SOR iteration

method depends upon the choice of w, which is
called as accelerating factor and lies between 1

and 2. There is no way fo estimate the value of
o for an iteration process for a particular
problem. The only way to estimate the value of
wis by hit and trial method. Initially some value
of mis assumed and then it is changed until the
best converging rate is achieved. This method is
also included in the model. This method is not
very good as each time one has to estimate the
value of o for best results. Iteration error for this
method can be calculated in the same way as
explained in the Jacobi method.

8. RESULTS AND DISCUSSION
o Testing of Advection Algorithm

Advection algorithm described in previous
section was tested for a test problem shown in
Leveque (1996), who developed the advection
algorithm. In the test problem a plane of
dimensions 1 x 1 with grid sizes of 100 x 100,
which make grid dimensions of 0.01 x 0.01. In
this plane a value of density function was
assigned, which is shown in the Fig. 4, This
method is called solid body rotation test. Now a
non-constant velocity profile is specified in the
plane as:

u=(y-1/2),

v=(x-1/2) 41)

Fig. (4): Initial density function on a plane for
solid body rotation test of advection
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Initial data of density function in the form of disk
is centered at x0=0.5 and y0 =0.75 with a radius of
0.15. A time step value for advection iteration was
chosen 0.01. In this test problem pure advection is
assumed and the velocity profile is taken in such a
way that disk should come back at its original
position with the same density function values as
at points. This problem was tested by inethod
three with all limiters. The result after one
revolution using the third method is shown in Fig.
5.

.

N
apfftrzres

Fig. (5): Profile of density function after one
revolution using 3rd method
100
a0 4
0.
™ -
&0
o
-
30
2
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¢ T
[} 1 L) ] L) 1 2 L » L]
o of processars
" Jacti - Rad Black Gatas Seid]

Fig. (6): Scalability and comparison of speed
for Jacobi and Red Black Gauss

Seidel methods

C.20
e Advection-diffusion Combined Test

After testing advection and diffusion schemes
separately, the combined advection-diffusion
scheme was tested. The combined advection -
diffusion scheme was tested for Wexler (1992)
analytical solution of two dimensional advection-
diffusion including source-sink term and
Zoppou’s (1997) analytical solution without
source-sink term.

. (7): 3D plot of concentration profile using
analytical method at 0.05 second

Fig. (8): 3D plot of concentration profile using
advection-diffusion numerical scheme
at 0.05 second
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9. CONCENTRATION PROFILE CONTOUR
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Fig. (9): 3D plot of concentration profile using
analytical method at 0.1 second

130

i
%—AslS

a

Fig. (11): Concentration profile contour using

analyticat method and numerical
scheme at 0.05 second Filled
contour - Analytical method Line
contour ~ Numerical scheme

Fig. (10): 3D plot of concentration profile using
advection-diffusion numerical scheme
at 0.1 second

Fig. (12): Concentration profile contour using

analytical method and- numerical
scheme at 0.1 second Filled contour
- Analytical method Line contour -
Numerical scheme
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10. CONCLUSION

o A vertically integrated two dimensional
numerical sediment transport model was used
to simulate suspended sediment transport
using advection-diffusion equation and solved

it separately.

¢ This model is divided in two parts:
bydrodynamic modeling and sediment
transport modeling. Hydrodynamic modeling
simulates flow velocities which are then used
in the sediment transport model to simulate
sediment concentrations.

e There was a very small difference of 3™ plot
profiless of concentration between the
advection-diffusion numerical scheme and the
analytical method for small time values and
vice versa.
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