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Abstract:

This paper presenis au efficient ling-offset algorithm for gencral polygenal shapes with islands, A
developed sweep-line algorithm (SL) is introduced to find all self-intcrsection points accuralcly and
quickly. The previous work is limited (o handie polygons that having no line-segments in parallel to
sweep-line directions. An invalid loop detection and removing (ILDR) algerithm is proposed. The
invalid loops detection algorithm divides the polygon at self-interscction points into a set of small
polvgons. and re-polygonized them. The polygens are checked for direction; invalid polygons are
always having inverse direction with the boundary polygon. The proposed algorithm has been
implemented in Visual C++ and applied to offsel poimt sequence curves, which contain several isfands.
Keyward: Polygonal chain, monotorie chain, sweep-line, sell-interseciivn, CAD/CAM, CNC, spiral pocketing,
line-otiset, defecting invalid loops

1. Introduction:

In order to machinge complex pockets on milling machines, it is nccessary to fill 2D areas with o
back and forth sweeping motions of the cutting tool. There are two sweeping motions, spiral offset and
zigzagging paihs. The spiral offset is defined as a locus of the points, which are at constant distance
along the normal from the gencrator curve. Spiral offsets are widely used in various applications, such
as tool path generation for 2.5-D pocket machining {1...10], 3D NC machining, and access space
representations in robotics. Spiral milling is an important operation in CAD/CAM, and the problem
hos been widely studied, mostly, as a pocket-machining problem through three approaches. Line-olfsct
{pair-wisc) [1. 9, 17), Voronoi diagram |7}, and pixcl-based approach [8]. Vorcnoi diagram needs a
very carcful implementation 1o avoid numerical computational crror [7). Pixcl-based approach would
require a large amount of memory and an excessive computation time 1o achieve an adeguate level of
precision [9). Ling-ofTset approach is more stable, not prone 1o computational errors, and would not
require a large amount of memory [9). Sell-inlersection is one of the main problems in line-offsei so. it
is an cssential task for practical applications to detect all polygons of the self-inerscction points
correcily and gencrate valid polygons. The literature survey on offset curve and self-intersection
polvpons prior (o 1992 was condected by Pham [10] and after 1992 by Takashi M. [11). The sclf-
iniersection poly gons can be handled through two approaches, line-segments inlersections [10, 19} and
sweep-bnc [12, 21, 22], Sweep-line is more efficient than linc-segments intersections |16]. Beatley
and Oumann 1979 {121 introduced a sweep-line algorithm 1o find all k intersections among n line-
scgments with an Q((n + ky.log n} time complexity. Chazelle ¢t al. {13] and Mehlhom ct al. [14]
developed Bendey ot al. algorithin (12], but their aigorithm is more complicated to implement [13].
Park ct al. 1998 [15], developed a sweep-line algerithm 10 {ind all intersestions k among polygonal
chain which has m monsioie and n line-segments with an O(( n + K).log m) time complexity, but it is
oniy restricted for poly gons which contain line segments nonparaliel 1o sweep-ling direction.
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In this paper. a sweep-line algorithm. for gencral polygonal shapes with islands. is developed. The
eveloped algorithm can be applied to find self-intersection points. even if the sweep-line was paraliel
to onc or more line-scgment in the polvgon. Also. invalid-loops detection and remioving algorithm are
praposed. The proposed algorithm has been implemented in Visual C++, and extensively tested for
several polygonal shapes. The results show robustness, and quickness of the developed algorithm for
offsciting general polygonal shapes with islands,

2. Definitions and Terminology:

This scction contains some preliminary definitions and tern = that are need throughout this paper.
The (ollowing definition of a monotone chain is based on those of Preparata et al, [18] and Park et al,
[15}. To handle the chains with line-segments paralle] to sweep-line, parallel monotone is suggesied in
this paper.

Definition of Chain:

Chain is a connected sequence of line segments, and a polygon is 2 chain that is closed and non
self-intersecting {15]. It is nssumed that a consecutive collinear sequence of line-segments is merged
together 1nlo a single line segment.

Definition of Monotone Chain:

A chain C in Fig. | is a monotone with respect to a line Sweep-linc
ZL. if C hos at most one intersectio” point with a line L "\\
perpendicular to ZL ]15]. The line ZL is called the
monotone direction. and the line L becomes a sweep line.
It is assomed that ZL-line has an x-axis dircction. There
are two {ypes of monotone: non-paralle! monotone (which
contains no parallel line-segment to sweep-line direction),
and parailel monotone {which is only one line segment
parallel to sweep-line direction),

Definition of Parallel Monotone Chain (PMC): Fig. 1 Mongione chain w.r.t line L

The Monotone is paratlel, if it has ot most ong line-

segment whose dircetion is paraliel 10 sweep-line Fig. 2. It 2 a

has also nwo vertices (P1, P2) i.e. wo sweep-lines L and

L- at Pl dnd P2 respectively. The nwo sweep-lines arc Up BA Dawn PM
pr ! F2

¢ i i_l\rlonu[nnr.‘
i 1T i chanc

overlapped. 1t is assumed that the sweep-line L, intersects {UPAMY (DPM)
the PMC at point P1 and sweep-line Lz intersects the PMC
al point P2, While traversing o chain. each of the locals

Sweep-lmea

“extireme” poinls {with respect to their x-values) are Sweep-lines i Lo Le
marked cither as a left or rightextreme point and up or Lils ——
down-exireme point as follows: —_— EL

Definitien of Extreme Point: A pont in a chain iscalled a  Fig. 2 Parallel Monotone Chain (PMC)
fefi-extreme anddor right-extreme point, il its x-value is

locally minimum or maximum. The monotone contains right & left extreme point {13). PMC contains
two points: the first point {P1 Fig. 2) is an up-extreme point and the last point (P2 Fig. 2) is a down-
exwreme point, like right and lefl extreme points in general chain (non pacallel chain).

Definition of Sweep Step (55) & Monotone Sweep Value

. : . ¥ P3
{MSV): Sweep-step (55} is the x-coordinate of SL. and
intersection of SL with certain monotone is called

s - D
monotone sweep value (MSV) |
Manotone Chains & Extreme Points: Shown in Fig, 3 PO N g
are local exweme points of a closed polvgonal chain e“*-..‘__ 2 E ~'®
consisting of 7 points {or 7 line-segments): There are two 1) Ve M2
left-cxreme points, PO and P3, two right-extremie points, ]
P2 and P4, one up-extreme point, P3, and one down- P B .+
extreme point. P2. _Thc ci:_am can easily be dnlwdcci into O Left Extreme IS Down Estreme
monolane _chams“Smcc left & right-extreme points, up & @ Right Extrere 8 Uy Extrems %
down-extreme point aliernate, cach sequence of the line- :

Fig. 3 Monotone & cxtreme points
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scgments starting from lefi to right-extreme point or from up-1o down-cxtreme point (or vise versa) is
identified as a monotone chain. The sweep-ling steps are defined at vertices of pofygonal chain and
sored by a quick-sort aigorithm. £t is assumed that a vertical sweep-tine is used in the developed
algorithm. There is no problem. i the chains contain linc-segments in paraliel with the sweep-line
through using of PMC. i.c. the fundamental limitation of the Park ef al. [15] sweep-line method is
removed.,

3. Sweep-line Algorithm (SL):

The proposed polygonal-chain intersection algorithm mainly works on a set of monotone chains.
The propertics of a monotone chain are: (1) it has no self-intersections among its line segments, and
(2) its points are in a sequence order of x-values allowing an efficient use of the sweep-line method.
The following is the explanation of sweep-line algorithm.

#Sweep Line Algorithm
SwecpLine (Amay of Peints [n])
{

Polygon* €anvert points data fo lines /* n-fines % and store them in a polygon,

Polygon Filter;

+* Remove collinear and close this polygon if not clased %/

Calculate extreme point {(Polygon);

* Left or right and up or down Jor paraliel monotone */

PolygonToMonotoness Convert polygon data to m Monotonss,

SweepLineAmay+ Find sweep-lines ammay:

fyri* & until n de

fur j* ®until m do
if monotone = PMC and sweep-line is 17 sweep then
take 1* of PMC as intersection points;
elsc if monotone = PMC and sweep-line is 2* sweep then
take 2™ of PMC as intersection points;
elsc if monotone j intersects sweep-line i then
Find y-intersection between sweep-line i and Monotone j and store them in SLVI][]:
for i= 6 until m-1 do
forj» #+1 until j<i do
for k* # uatil n do
far kk* k+1 until Kk<k do

l:.‘l

if (sweep-line k intersects monotone i, j and sweep-line kk intersects
monotone j, i respeclively) then
Find intersection point:
/* Call intersection funchon ¥/
clxe
continue; ™ There is no intersection found

}

Poly gonToMonatoncs (Array of Points [n])
(
Make min. left extrerac is the Tirst point of polygon;
fur i+ 8 until n do
i
if {Lineli). DX>0) then
Define increasing moactone:
clse if (Linefi). DX <0} then
Define decreasing monotone:
tlse
Define PMC;



M. 17 T. T. El-Midany. A. Elkeran and H. Tawfik

}
SweepLincArray(Array of Points [n])

for i+ © until n do

Define sweep-line as a line through this point with length = SWEEP_LENGTH:
* where SWEEP _LENGTH is the length of sweep-line ¥/

Use quick-sort algorithm to sort sweep-lines based on x-coordinates:

}

Where: n is the Mo. of points er line. m; is the No. of monotones; Line.DX=X2-X1 where X2, X! is
the x-coordinates of line end points.

4. Information Flow through the Sweep-line algorithm:

The point data are exported from CAD system in DXF format and imported to data filter, Fig. 4. In
this step collinear points are removed. and stored in monotones. These monotones are stored in
monotone chain. The sweep-line values are sorted and stored in sweep chain, And then, monotone-
tntersection module will find self-intersection points.

i i [
.__zr_.__.____,_....
‘ Make sweep chain st l— i B
i Pl I

Sor sweep chain list D . : 3
T ST BL 5% O

i l Find intersecuon monotones l

Yes

P Intemection point is U swee
Call (ntgrsection Functinn nichhedion poml y We v
value of general monotons

Fig. 4 Dat2 Now through sweep-line algorithm

5. Detection of Valid Polygons Aigorithm (DVP):

One of the main problems of spiral offset path generation arises when the polygonal chain is self-
intersected, The system ability to detect the valid polvgons was proposed to find the valid polygons.
DVP takes output of SL which is stored in intPoints(k]. And redefine separaie polygonal chain into
valid polygon chain. The DVP algorithm can be shown as follows:

M DVE algnrithm
DeiectionValidPolygon (array of Points [n] . output of SL intPoints{k])

tmpPolygon + “Divide this polygon at intersection points:
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/* sinre new data in tmpPolygon *

Re-poly gonize tmpPolygon;

/* Re-sort lines and close this polygon */
fory* B untiln do

Add line i to newPolygon;
if (ncwPolygon = Closed) then
L8
if {direction of newPolygon = dircction of
boundary) then
Add newPolygon to polygon amray;
/* This polygon is a valid polygon.
Refer to Fig.5, it is assumed that boundary hos
CCW direction i.e. valid polygons have CCH
direction™
clse
delete [} newPolygon,
#* defete invalid polygon CW dir ¥/
}
}

No. 4, December 2001.

Fig. 5 Detection of valid polygons

6. Filleting Concave Vertices Algorithm (FCV):

Il the internal angle at a certain venex is greater
than 180° {(rrad), then this vertex is called
"concave”. Filleting concave vertices reduces toal
path length and prevents sudden directional changes.
This is very important specially in high speed
machining. Park et al. [L5), Kalmanovich et al. [18},
and Dobkin et al. |20], did not incorparate ¢oncave
vertices fillet in their works. The fillet radius depends
on the offset of a cerain spiral, ie. the far the
polvucnal chain from boundary. the greater the
radius. The offset distance of the first spiral = (tool
diameter)*0.3. The algorithm steps are shown below:
i 1 VC Algorithm

FilletConcave Venices (array of Points {nl)
{
for i 8 until n do
{
It
if (Vertex(Line[i], Line[j]} ="Concave")
then radius* FindRad{Line(i], Linc[j]);
Trim(Linefi],radius): Trim({Line{i]. radius).
if {radius == Length of Linefil or
radius >= Langth of Lm=|i]) then
continue: 7 * refer to Fig 6 %7
AddRadTePolygon(radius,Line[i], Line[j]):
}
!

7. Island Making Algorithm {IM}):

The M algorithm is proposed to handle the
island during pocketing, Fig. 7. The algorithm
conlains the following steps:

Concave
Yerox

Search for all concave
vertices

emaining
ul

Determine radius

and center of Gllet

Fitlet ali concave
vertices

3
Make spirals for |
L .
remaining arca
': End

(

—

Fig. & Filleting concave Vertices

—— |

Fig. 7 [sland making




M. 19 T. T. El-Midany. A. Elkeran and H. Tawfik

Step 1: Detect boundary and island poly gons. make boundary CCW, and island CW direction.

Step 2: Make one cutward offset for island and inward offset until it meets for boundary up 10 meet
island offset. Store the generated offset of boundary and island in temporary polygons.

Step 3: Use SL to find self-intersection points for the temporary polygon, and call DVP to find all
valid polvgons.

8. Applications:

This section contains nwo parts: Part §, shows the execution time for three-sample examples vs,
offset distance for full offset. These sample examples are performed on PIII-800 MHz PC, the
execution time calculated through a built-in Visual C++ function (refer to Fig. 8). It is assumed that
the offset in the first generated polygon =30% from a cutting tool diameter and 90% for the remaining
generated offset. Part 11, shows the relationship between the number of offset and the execution time.

Part (I) Execution Time for Full Offset:
As shown in Table 1. the execution time is decreasing while the offset distance is increasing. This
variation is more significant for small offset distance, and almost linearly with large values of offset

distance. These results are plotted on a line-chart shown in Fig. 9 for three-sample examples (bearing
holder. deer. and magician).

{(a) Bearing Holder (b) Magician
Fig. 8 Proposed System Sample Example

Part (IT) Effect of Repeated Offset:

The relationship between the number of offset and the execution time for the three-sample example
is given in Fig. 0.

This figure shows that the execution time is increasing linearly for small values of offset and
becomes almost constant for large values of repeating offset. This constant variation occurs when the
repeating offset value becomes closer to the full offset values of the application. Also, the figure
shows that Magician starts with increasing rather sharply than Bearing Holder and Deer. This
sharp variation depends on the complexity of the shape and the number of islands. These results are
plotted in Fig. 13.
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Table 1: Sample Example Exccution Tume vs.

offset distance.

Bcarin?’ l Magicia

OfFset Holder Deer o
{rmm}) s ms ms

1 1128 322 2685

7 202 127 533

10 132 127 438

15 106 93 473

0 | 90 85 305

S 82 285

Table 2: Execution Tume vs, No of offset

g‘&:j E:{cgl:;;:rg Deer \ Magician
‘ A 73 215
3 2 138 345
51 201 600
10 70 294 }_-737
1s_| 14 303 1235
2 152 | 3 1390
30 98 | 359 1541
50 W | 359 1674
100 241 | 389 1674

9. Conclusion:

This paper presents an efficient line-offset algorithm for general polygonal shapes with islands. A
developed sweep-line algorithm (SL) is intreduced to find all self-intersection points accurately and
quickly. The developed algorithm is a considerable improvement over previous work algorithms
which were limited to handle polygons that having no line-segments in parallel to sweep-line
directions. An invalid loop detection and removing algorithm is proposed. The invalid loops detection
algorithm divides the polygon at self-interscction points into a set of small polygons. These small
polygons are then re-polygonized and checked for direction; invalid polygons are always having
inverse direction with the bovadary polygon.

The proposed algorithms arc tesied through several application examples.
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