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Solution of Parapolic Navier-Stokes Equations for lLawminar
Forced Convective Flow in Entrance Region of a Flat Fassage
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Abstract- Due to dependence of forced convectlve Dheat
transfer on the hydrodynamlc Elow fleld; any lmprovement on
the analysls of this Elow Eleld lg of great importance to
understand the heat trancfer process. In thls work the [low
f£leld is described by the parabollc Navier-sStekes equalions;
vhich are solved by local non-similarity solution-method.
According to this method; with sultable definitlon of the
problem variables , a set of ordinary differential cyuatlions
are produced. This set ls sulved, numerically, by
Runge-Kutta method accompanied wilh shouling method of
boundary value problems.

The wvalues of 1local Mussell number and local
coefflclent of Crictlon are calculated For flulds of Prangtl
number of one. Some passages ofl Reynolds numbez(ReL) of 100,

200 & 300 are studtied here. Two formulae of Nussell number
for dlfferent passage heighls are prupused.

1. Introductlon

Good understanding of convective heat transfer problems
ts dependent, .prloncipally, ou goud analysls of tlie
hydrodynamic €low ffeld. The developemenl of hydrodynamic
flow f£iel0 In combined entrance tegiuvn of a ducl was sLudled
by many investigators. ®Rakac¢ and Yener (21 surveyed
ditferent methods developed to olve the ptoblenm of laminar
Eorced canvectlon in combined entrance reqion of a Auect.
Wasel [4] made a local similarlty solution of lamlnar forced

convectlon in entrance reglon for f[lov between two parallel
plates.
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In those works, the hydrodynamic flow fleld vas
described by boundary layer equatlons. Recently, Wasel [5)
made a solution of the flow field based on Lhe parabolic
Navier-Stokes eguations [1]. According to Lhe used wmethod in
hls solution some terms in modified governlng equalions were
dropped. In present work, an improvement of hls solution s
made by 30lving the governing eguations vf Lhe problem Ly
local non-similarity solution method [3). Because of the
nature of the governing eguatlons and of the used Lechnlque,
the solutlon ls carried out in step by step manner.

2. Governing Eguations

As shown In Fig. (1) the 1lamindr £flow Dbetween two
parallel flat plates 18 considered. The unlform velocity of
approach, the temperature and pressure at lonlet of the
passage are denoted as u , T, & D ,respectively. The  Thelght

of the passage i3 taken as 2b. Wal) temperatvre (T)) 1is
assumed to be constant. Constant £fluild properties are
assumed.

The governing equations can be written in Caztesian
co-orxdinate x, y as follows:

gg + gg = 0 , (13

u gg + v gg = - } %5 o %;g ¢ (2)

u gz + v é; = -1 %E M g;g ! (3)

u %E + v gg = g;? ! )
!

vhere 1 and v are the wvelocity components {in x- and
y-directions, respectively, T and p are the temperature and
pressure of EFluld. £, v and «+ are the densily, klnematlc
viscosity and thermal d}ffusivity, respeclively. The second
derivative of uv,v and T with respect to x are assumed Lo be
small compared with othér terms in eqguatlens (2)-(4}.

The veloclity proflle at any position (x) wust salblsfy
the continulty eguatlon in inteygral form and hence, one can
write the equation;

h

S udy =tu_b . (5)

Accordlng to equatlion (5), the wveloclty alb axis of
similarity must be corrected to the proper wvalue, which
produces a velocity proflle satisfieg Lhis equation.

Due to the simllarity of hydrodynamic as well; thermal
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flelds aboult the axis of the paszage, It 1z convenlent to
solve the governing equations From one wall to (he center of

the passage. Egquatlons (1)-(4) possess the follovling
boundaxy conditions;
u=v=0,;T=T aty-=0 , (6-a)

u = uo" ; By =0, T-= TU at y = b. (6-b)

To express the governing equations in dlimenslonlesy
Eorm, one introduces wnew Lindependent variables ;7 as

follows;
-1 X_v = /e
t—b uo ")-ybbJX " (7)
Furthermore, a dlmenslonless forms of stream function,

pressure and tempexrature axe deflned according to the
folloving relations;

wix,y) = Y ue x v £(V,)

’ (ﬁ‘a)
P(£,m) = ( powys = p_) / ;o0 (8-Db)
®(,m) = (T -T) / CT_-T ) , (8-c)

where y(x,y) ls the streawm function, which Is defined such
that it satisfies the continuity eqguatlon (Y}. E(7,n),
P(f,n} and NT,n) are the dimenszionless forms of
stream funclion, pressure and tewmperature, respectively.
Subatitutlon of equations (7)-(8) Into eguations (2}-14)
leads to the following dimensionless form of governing
equations, (vhere Lhe primes denokblag Jdtfferentiation with

respect o »n and the su€fix ; denoting the differentlation
with respect to ¥)

2 €M Ef" 4 n P= g L€ - B 0P, , {9)
2m EM+ 2 f" 4 om £ E" 4 £ L -~ » £ -4 7 Re P =
R A N T LT
wEE B v 20 gy ) (10)
é o + ( £+l E ) S -r g s =0, (11)
z

vhere Reb is the Reynolds numbexr based on the balf of Lhe
passage helght and deflned as Re = u, b / .
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Deflnling G as the derlivatlve of £ wibth regpect to I and
neglectlng P( Exom equation(9), one c¢an eleminate P from

equations (9)-(10). The produced equallon 1s wvritten In
simple appearance as follows ;

a fUra f" 4o Era fra =0 , (12-3)

1 Y

vhere a, 3, 32, 3, and a_ are coefflclents Intorduced to

put the obtalned eguation In alnpler appearance. These
coefficlents have the following deflinltlons ;

a_=8 " Re, #+ 20 . (12-b)
a,= 4t ReLE+ M E+ 2447 Re GHT 4G,
(12-c)
a = (471" Rel G- n £+ WE G - w6,
(12-4)
a,=-0Cnm G , (12-e)
a g = - XM GG+ 2F G ) . (12-£)

accorxdind to the used technlque of solutlion ( local non

simllar solution-method [3) ), ULhe derfvative of f wlth

respect to ¥ is dealed with as a nev dependent variable (G)

and thus one needs another subsidlary
equation can be obtained by defferentlating
wlth respect to ¥,

equation. This

equatlion (12)
The produced eguatlon takes the following
torm;

b G"+ b G" + b G‘* b ¢ 1 b =0 , (13-3a)
L 2 a + =

where the coefflclent b, b, b, b and b ate deflined as ;

b, = 8 % Rel + 2% , (13-b)
b,=af Rel £+ n {427 R G+ nG (13-c)
b= - (4¢" ReZG+n £-"1rcvai 4,0

+ 12 7 ge” £ , (13-48)
b, =16%" ReZ ¢ + 2" £v = Dl ,{13-e)
b, = 18 ¢ Rei E" 4+ B8 ¢ Rei £ £ (13-F)

According to the definttion of G and by neglecting the
derjvative of & wlith respect to », the energy equatlon(ll)
takes the following form ;
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{14)

Eguatlons (12)-(14) represent a system of oxdinary
dlfferentlal) equations In f, G and ® as unkowns and £ is

dealed with as a parameter. Thls system of eguatlons has the
following boundary condlitions ;

£ =E=6=06'=0 ; &=

1 at 5 =0 , {15-a)
fr=G6G" =85 =0 ; €£'= U, /ou at =, (15-b)

where f at n,. has to p:oduce a veloclty profile satisfles
the following condlition ;

S
AJ‘ £ d:) = ", N (15-c)

vhere "y Is the value of the variable . at the centerxr of the

passage ( n, = b v u_ / v %X Y. Equatlion (15-¢) Is Qderived

using the definitions of dimenslonless varlables,; equations
{7-8) & equation (5).

3. Numerical Procedure

Accorxding to the local non-similarity method (31, the
modifled governing equatlons (12)~(15) are solved for
dlffarent valuves of the parameter &. As 1t Is <c¢clearxr from

eguatlon (7) the value of { can be expressed In terms of 2N
(¥ = 1/»5), thus the solutlon of the governing eguatlons is

carried out several tlmes for dlfferent values of 2 and lan
turn; for different values of .

In case of forced convecllve flow, the momentum
equations {22)-(13)& (15) can be solved separately and then
the solution of energy equatlon (14) can be carrled out. Fox
certaln valve of &, the mumerical solution s carxied out
through two maln skeps. Ficst; Lhe considered
equations{12-13& 15) are solved (our assumed values of f£"(0})&
G"(0) by Runge-Kutta method of ardinary difEferential
equations and then the solutlon s correcked Dby shooting
method of boundary value problsns to satlsfy the boundary
conditlions at n=n, (£*(n, = G"(n, ): 0). Second step; Is to

correct thé obtalned velocity proflle (f' wversus »n) to

satisfy the equation (15-¢). This s achleved Dby uslng
shooting method Eor second time.

Knovling the value of £& G for dlfferent values of n; as
Lt s done before, the energy equatlon and 1{ts boundaxry

condltlons equations {(14)-(15) can be solved IIn siamilar
manner.

When Lhe fields of veloclity and temperature have been
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obtained, local Nusselt number (Nuw) and local coefflclient

of frictlon (C) can be determined according to the
following definitions;

ou
‘(V = 59 y=0 r (16)
- - = -y &
q, = h (T =T = -k 500 4 (17)

vhere q,ls the heat flux at single plate of the two heated
plates. Introducing the dlmenslionless varlables ln equattons
(16)-(17}), one obtains the folloving expressions of local
Nusselt number and local coefficlent of frictlion;

Nui / /ReK= Dr(x,0) ; (18}

C“ /Rex = £"{r,0) , (1%)

wvhere Re‘ denotes the local Reynolds aumber (u x /») 3and Nu
is local Nusselt number ( h x/k ).

4. Results and Discussion

The calcuvlations are carxrled out f[for three different
passage helghts according to the value of Re (uqb/u) equals

to 100,200& 300. Through these calculations the fluids of
Pr=1.0 is conslidered.

Flg. (2} shows (he relatlon between local coefficient of
frictlon ond local Nusselt number as defined In eguations
(18)-(19) wversus the dimensionless distance along the
passage represented by ¥. It s clear Lthat no effect of
passage helght on the value of covfficient of Eriction at
values of [>0.15. For Nusselt pumber, ln the same Ejlgure ;{n
general, the helght of passage has no effect or at least
very small effect through out the studled range of ¥.
Consequently Lt ls convenient to derive a formula for
Nugselt number represented by »'(0,Y) as a Eunctlon of
distance along the passage wall represented by ¥F. Fig.{(3)
shovs two proposed formulae compaxed wilh the calculated

data points. They, mathematically, are expressed in the two
following relations as;

'9 \

"

0.302836 ¢ + 0.338300 (lineax £it)
9!

1

0.340181 Exp (0.782064 &) (exponential flt)

accordling to the deflnition o€ Nusselt namber as well;
coefficlent of frictlon -eguations (18)-(19) and other
variables of the probleam, one can obtain new relatlons after
some manipolations of the obtalned numerical results {(&'s £
versus {). Flg.(4) shows the relations between Nu, and the
dimensionleas distance along the passage [ (x/b)/Re_ Pr 1.
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Nusgselt number (Nu } increazes raplidly near the entrance of

the passage.then it Increases linearly for greater distance.
Flg.{5) shows local Nusselt numbexr based on the half of
passage helght (Nub= h b/ k) vexsus QJdimensionless distalce

along the plate (x/b). Neaxr the entrance of the passage Nu

has vexy large wvalues and suddenly d¢ops and 4goes to
asymptotic values (as It 1s cleaxr In case of Re = 300).

Fig.(6) shows local coeEflicient of f£riction versus
dimenslonless dlstance (x/b) for Qilfferent values of passage
helghts. For narrow passage (Re = 100) the value of

coefficlent of frictlon 15 greatex.

5. Concluslion

the used technique in present wvork, presents a 3slmple
possible wvay to deal sufflclently with parabollic
Navier-Stokes equations. In the same time, thls technlique lis
sultable to be used Lo solve the energy cquation. Accordlng
to the propexr transformatlon of the varlables of problem,
tvo propoaed formulae for egtimating Nusselt number of
considered problem are presented here.

6. Nomenclature

2b the passage helght

C; coefficlent of frictlon, rw/m; ~

£ dimensionless stream function, //72?77x

h local heat transftexr coeffliclent, defined by eq.(17)

k thermal conductivity of £1luid

Nub ‘loca)l Nusselt number bascd on b, hb/k

Nux local HNusselt numbecr, hz/k

Pr Prandtl number, v/

q, heat flux at the wvall

Reb Reynolds number based on the half vf Lhc passage
hefght (b), u b/» ’

Rex local Reynolds number, L X/

T temperature of fluld at qgeneral positlon x, y

To temperature of Eluid al the inlet cross-cectlon

TU vall-temperature

u veloclty cowmponent in x dlrectlion

v, velocity at the Lnlet of the passags

u

0. % the velocity at Lhe center of the passage &t any
’ value of x

% veloclty component {n y-direction



M. 67

7.

M.G. WASEL

co-ordinate along the lower wall

Y co-oxrdlinate normal to the lower wall of the
passage

a thermal dlffusivity, ¥ /n ¢

» dimensionless independent varlable, yxfﬁo/x "

Ny the valve of 1y at the center of the passage

. l — -

4 dimensionless independent variable, G /F§ v/u0

1 £luid klnewatlc viscosity

fol £luid denslty

D dimensionless form of temperature, (T—To)/(TU—TO)

T, wall shear stress in x-directlion

yr strxeam function
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Fig. (1) S¢hewalic desciriplion af the (low
through the passage.

0.70
O.SOL—
‘e i
0.50
5 OO
o _
0.4\0E
0 T T SU RN S N BN S N U B A O T N A A A A
o5 0.10 0.15 0.20 0.25 0.30

Fig. (2) Nussell aumber ond coefficient of Iriction os defined in
eguolions (18&19) versus lhe dimensionless distonce ¢
for Re , equals lo 100,200 & 300,
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Fig.(3) The colculoted Nusselt number os defined in equation (18)
compared with linear ond exponentiol regression.
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Fig.(4) The locol Nusselt number based on the distance (x)
versus distonce olong the possoge.
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