Menoufiya University **Faculty of Engineering** Shebin El-Kom **Final First Term Examination** Academic Year: 2014-2015

Dept.: Production Engineering Year: First Subject: Properties of Materials Code: PRE 111 Time Allowed: 3 hours Date: 18/1/2015

Allowed Tables and Charts: (None)

Answer all the following Questions [85 Marks]

Question (1)

Auestion (3)

(15 Marks)

1) A reinforced concrete column of size 230mm x400mm has 8 steel bars of 12 mm diameter .if the column is subjected to axial compression of 600KN.

Find the stresses developed in the steel and concrete. Assume E for steel: 2×10^6 kg/cm² and E for concrete= 1.2×10^{67} Kg/.cm²

Question (2)	- 6.1	А. — — — — — — — — — — — — — — — — — — —	(10	Marks)
2) metallic bar 25cm x 10cmx5cm is loaded by 400 ton,40) ton	and 200ton	in the dire	etion v v
and z respectively. Find the change in volume. Take $E = 1$	200 t	on/cm^2 and	nassion' r	atio 0.25
Also: find the change that should be made in the 400 tons	s load	in order t	hat there a	hould be
no change in the volume of the bar.	Jione	, in order t	hat there s	noute be

<u>Question (5)</u>	(10)	Marks))
) A hollow shaft of diameter ratio 3/8 is required to transmit 800 meteoric I	lorse n	owers at 110
r.p.m, the maximum torque being 20% greater than the mean. The shear s	tress is	not to
exceed 630 kg/cm ² and the twist in a length of 3 m not to exceed 1.4° . Calcu	late th	e maximum
external diameter setisfying these and did TIL C. O. (105x 1 2	itute tii	c maximum

external drameter satisfying these conditions. Take: G=	8.4 x 10° kg/cm		
Question (4)	0	(15	Marks)
For a beam has a channel cross-section of the given dim for hight "h" if $(\sigma) = 3(\sigma)$ for the motorial E. (1)	ensions .determ	ine the suital	ole value
$\frac{101 \text{ mgm} + 11 (0_c) - 5(0_t) \text{ for the material Fig}(1)}{Ouestion (5)}$		(15	Marks)
outsiton (5)	1 No. 1		

6) A cantilever 2m. long carries a point load of 1000Kg at the free end, and a uniformly distributed load of 200 Kg/m over a length of 1,25 m from the fixed end. Find the deflection at the free end, if E=200ton/cm². Take, I=13824 cm⁴. (10 Marks)

6)A cantilever 3m long and symmetrical cross- section 50 cm deep carries a uniformly distributed load of 3 ton per meter run through its length, if $I = 5100 \text{ cm}^4$ and $E = 2000 \text{ton/cm}^2$ Calculate the deflection at the free end. Also, what the maximum point load which the cantilever can carry at a distance 2.1m from the fixed end in addition to the distributed load if a)The bending stress must to be now here exceed 1.4 ton/cm2

b) The deflection at the free end must not exceed 6mm.

TANA	National Academic Reference Standard(NARS)			
Field	Knowledge & Understanding	Intellectual Skills	Professional	General Skills
Program Academic Standards that the course contribute in achieving	A3,A4,	B5,B17	C2,C3	D1and D5
Question No.	1and2	5	3and4	6