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ABSTRACT :In the present worh, analysis of simply supported thuin
elastic circular cylindrical shells via the Author's nodal Iine
finlte difference melhod (s presented. The analysis slarts with
the accurate derivalion of the three governing partial
differential equations without any simplifications or assumpt Lons
that affect the generalily of thess equations. The method requires
the division of the shell into a mesh of parallel fictitious nodal

tlnegs in the longitudinal direction Simple trigonometric bastic
functions having uncoupling property are used to express Lhe
displacement components vartalion along the nodal Lines.

Consequently. three ordinary difjerential eguations

are der.ved
and cas! into three simultoneous noedal

line difference equations.
The final matrix of these difference equations .ig a square bandsa

matrix with small half band width which reduces, e a great
extont. the core storage and the time of computations, The results
obtained are compared with those from analyiical solutlons and the
comparison demonsirated a close agresment.

INTRODUCTION

Circular cylindrical shells belong to the c¢lass of stresged-skin
gtructures which by virtue of their geometry and small flexural rigidity tent
to carry applied loads by direct stresses lying in their plane accompanied by
small bending moments. The formulation of the basic eguations of thin alastic
shells, in particular, circular cylindrical sheils, due to their importance
for practical applications, has been the sub)ect of considsrable researc
interest which received repeated attention in s3everal vsublicationa. The
variety of the result:ing equations found in the literature, although all ot
them are bazsed on the same basic Kirchhoff's hypotheses, are due to variatior

in rigor in their derivations and modified approximations in the subsequent
formulations.
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A common difficulty with the rigorous basic equations for circular
cylindrical shell such as Flugge's, Timoshenko's, Vlasov's and Goldenveizer's
(8,11,13,14] is that their general sclutions faced with mathematical
complexities. For this reason many attempts have been made throughout the
higtory of the shell theory to simplify the basic equations. A number of basic
aquations of a simplified nature that are applicable to circular cylindrical

shells, having special geometrical relations (long - short - shallow}, or
defarmations conditions (inextensible) have heen suggested by many authors
such as Donnell, Gibson, Schorer, Finsterwalder and others. Detailed

discussion of these simplified basic equations can be found in many references
such as [10,11,12.15)

Herein the attention is directed to the application of the nodal line
finite difference method NLFDM for the analysis of simply supported thin
elaatic circular cylindrical shells. This methoed is a new semi-analytical
approach, developed earlier by the Author, which has been successfully applied
to the bending and in-plane stress analysis of rectangular and circular plates
[1,2,3,4,5,6,7). The nodal line finite difference method NLFDM can be briefly
considered as a solution technique which transforms the partial differential
equations into algebraic difference equations to be applied at nodal lines on
the actual structure, This technique calls for the use of analytic geries 1in
one direction while in the other direction the differential opsrators are
replaced by simple difference expressions.

The present analysis starts with the rigorous derivation of the three
partial differential equations governing the displacement components of thin
elastic circular c¢ylindrical shells., The derivation is only based on the well
known Kirchhoff's assumptions, used in all bending theories, without any other
assumptions or simplifications that affect the generality of the governing
partial differential equations. The application of the proposed technique
requires the division of the shell into a mesh of parallel fictitious nodal
lines in the longitudinal direction. Simple trigonometric basic functions are
chosen to express the displacement components variation along the nodal lines.
These bagic functions should satisfy a priori the boundary conditicns at the
two opposite end diaphragms. The three governing partial differential
equations are then transformed into three simultaneous ordinary differential
equations which are in turn ftransformed 1into three nodal line difference
equations by means of replacing the derivatives by difference expressions. The
application of these nodal line difference equations at each nodal line
regults in a system of linear algebraic equations. The final square matrix of
these equations is a symmetrical banded matrix with small half band width
which reduces drastically the storage requirements and the computation time.
The present formulation has the advantage of being general and applicable to
aimply supported thin circular cylindrical shells having any geometrical
relations under any type of loading conditions. Numerical examples are
included to demonstrate the applicability and the accuracy of the proposed
method.

METHOD OF ANALYSIS

A circular cylindrical shell may be thought of as a surface generated by a
gtraight line, known as the generator, moving over a plane arc of a circle.
The present study deals with the stress analysis of thin elastic isotropic
cylindrical shells with relatively =small thickness compared with each other
dimensions and compared with 1its arc radius. The analysis sgtarta with
establishing equilibrium of a differential element cut out from the shell,
Fig. 1-b, by two adjacent generators and two cross sections perpendicular to
the x-axis, and its position is defined by the coordinate x and the angle .
The forces acting on the sides of the element are shown in Fig. l-b. The load
intensity components X, Y and Z are considered to be distributed over the
surface of the element,
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end diaphragnm

end diaghragm

Fig. 1

Considering the equilibrium of the element and gumming up the forces 1n the x,
¢ and z-directions, 5ix equilibrium equations are obtainad. One of these
equations, derived from the squilibrium conditions of bending moments in the
z-direction, 12 self satisfiad., The other five equations are reduced to the
fallowing three partial differential equations.
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The displacement at any point on the middle surface of the shell can be
resolved into three components u, v and w in the x-dirsction, in the direction
of the tangent at that point and in the direction of the inward directed
normal, respictively. The expressions for strains and curvatures at any point
of the middie surface of the shell may be derived ag foliows
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Esgentially all the analysis of thin shells iz based on the Kirchhoff's
qssumptions which gtate that the material of the shell is linearly elastic,
igotropic, homogeneous and obeys Hook's law. In addition to these agsumptions.
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all disolacements of the shell are assumed %o he small comparad {o ~ha shell
thickness. Taking these assumptions 1nto considerationg, strains as well as
gtresses at any point on the surface at a small distance , 2 <% i/Z, from the
middle surface may be obtained. Stress resultants and stress couples at any
point of the shell would be obtained by the integration of stresses over the
thickness. Detailed derivation of this preceeding procedure are not .included
herein, but the final experissions relating the internal forces directly to
the displacement components are given as follows
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D, B are the in-plane and bending stiffness of the shell

Upon substitution of the internal forces from equation (3) into egquations (1},
three simultaneous partial differential equations are obtained as follows
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Within the scope of the mentioned Kirchhoff's assumptions, used nearly in all
bending theories of circular cylindrical shell, there are no other assumptions
or simplifications that affect the generality of these partial differential
equations. Therefore, thegs equations describe generally the structural
behavior of this type of shell regardless of its geometrical relations. This
means that these equations are applicable to all classes of circular
cylindrical shells, {short - intermediate — long - cpen - closed - shallow -
deep)., under any type of static loading conditions.
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a - Nodal Line Diffsrenca Equations

The solution tachnique of the governing partial differential equations (4)
is carried out herein by using nodal line finite difference method which
requires the division of the shell into parallel fictitious nodal lines in the
longitudinal direction. The analysis involves the use of simple trigonometric
pasic function to express the digsplacement components variation along {hese
nodal lines. These basic functions should satisfy a priori the boundary
conditiong at the two opposite ends in the longitudinal direclions.

Simply supportad

Simply supportad

Fig. 2

Tne displacement components variation can be considered as the summation of
the terme of the used basic functions multiplied by a single wvariable nodal
line parameters. It is usually assumed that the shell is simply supported at
a two opposite ends ip the longitudinal direction termed as end diaphragms.

Accordingly. the displacement components variation along the nodal lines are
proposed as

r
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The load intengity components are then resolved into series similar to that
used to exoress the displacement components variation. Therefore the load
intensity components can be expressed as
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Upon substitution of equations ({35} and (6) 1into equations (4), three
ordinary differential equations are then obtained for each term, m, as follows
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whére n =Amn

Using the central finite difference technique in the circumferential
direction, the above ordinary differential equations are cast into the
following three simultaneous nodal line difference equations as
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The application of these nodal line difference equations at each nodal line
results in a system of linear algebraic equations. The final matrix of these
equations is a square matrix with size 3Nx3N where N is the number of the
nodal lines. The matrix is banded with small band width equals to 1%, and
hence this matrix can be rearranged in a rectangular matrix with size 3Nx17.
Accordingly, core storage as well as the time of execution are remarkably
reduced. The unknown nodal line parameters for sach term of the used basic

functions are then obtalned from the solution of the above menticned system of
algebraic equations.
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b - Internal Forcas

Once the unknown nodal line parameters, equations (3). are determined, it
is a simple matter tc cbtain the internal forces along any nedal line of the
shell. Upon substitution of equations (5) into equations (3) and by applying
the central finite differspce technique in the circumferential direction, the
internal forces can be expressed in a nodal line difference form as
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¢ - Boundary Conditions

The solution of a spscific two-dimensional problem of bounded continuous
domain should satisfy the equilibrium, compatibility and boundary conditions.
In the analysis of circular cylindrical shells, the boundary conditions at tha
shell four adges must be prsscribed in advance. The two opposite ends in  the
longitudinal direction contro! the choice of the basic functions which expreas
the displacement components variation in the longitudinal direction. The other
two oppoaite edges in the circunferential direction can take any combination
of boundary conditions.
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The analysis of circular cylindrical shell using the proposed technigque
raquires the application of the nodal line difference equations (8) at any
nodal line within the shell including the edge nodal lines. [f the pivotal
nodal line, k, coincide with the left or the right edge nodal line, Fig. 2-b,
two fictitious nodal lines outside the shell will be introduced. According to
the prescribed boundary conditions at the edge nodal lines, the exterior nodal
line parameters have to be expressed in terms of the edge and the two adjacent
interior nodal ilines. For sach term of the used basic functions, the letf and
the right exterior nodal line paramstsrs can be expregsed as follows.

1 - Simply supported edge {u =G , w=0, N,=0 , H¢-0}
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4 - Free edge {N¢-D Ny =0 My =0 ,Q¢-0}
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NUMERICAL EXAMPLES:

For the purpose of verifying the accuracy and the validity of the Author’'s
nodal line finite difference methed NLFDM in the anzslysis of cirgular
cylindrical shells, Gibson's simplified analytic solution is considered as a
reference. Gibson's solution i1s based on the Schorer's characteristic eguation
taking into consideration the following simplifications

v o=

. K =0 . Hx¢ = =0 , O =0

S‘l[\?—\q’)'o, = -

¢ R nh

-

fu +xv ) =10

It is worth poting that Gibson's solution has acceptable accuracy for shallow
circular cylindrical shells only,

Herein, two numerical examples are chosen to demonatrate the accuracy and
the validity of the nodal line finite difference method in the analvsis of
circular cylindrical shells in its general form.

Exampls 1 : A simply supported thin elastic isotropic circular cylindrical
shel]l with the dimensions shown in Fig., 3 has been analvyzed by using the
proposed technique. The dimensions of shell are chosen to go on with the
definition of shallow shells (Equation (4.1}, page 146, Ref. [12}). The shell
is assumed to bhe subjected to a distributed load with the intensity of 1ts own
weight. The two longitudinal edges of the shell are assumed to be free. Due to
symnetry in geometry and loading condition in the circumferential direction,
only half of the shell divided into thirty-one nodal lines (A¢ =40%/30= 120 )
18 consigered im the anelvsis. FPoiseon's retic v is assumed to be esoual ZErs
Lo mateh Gibson's assumption. The analys:s was carried out for one term as
well as for five terms of the used basic functions. The obtained results are
presanted in Tables 1 and 2 together with the results obtained from Gibson's
solution,
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own welght = 0.123 7y

i

L=9m8

t = 3cm

g « 216 t/com

Fig. 13

Table 1. :Displacements and internal forces at x = L/2

+
Mo of
[ 4 ] 12 16 20 M 1] n 36 40 |[terms SOURCE
0.0000] 0.38%9| o.7723] 1.1%95| i.3479| 1.9361] 2.32%0| 2.7130| 23.0990| 3.4813| 3.8383| 3 |NLFODM
v m 0.0000| 0.3861| 0.7729( 1.1609| 1.9807| L1.5422| 2.3368| 2.7278| 3.1199| 3.3096| 2.8949| 1 |NLFDM
0.0000] 0.1734] 0.3577] 0.363%| 0.8007| 1.0788| 1.4046| 1.7835| 2.2260| 2.7294| 3.2969| 1 13:»«1 112}
5.5336] 9.5387| 5.5471| S5.3588| 3.3693| 5.5748| 5.5695| 3.5486) 5.35073) d.4421| 3.3912) 3 |MLFDN
¥ om 5.9367| 9.5438 S5.5582| S.979%| 3.6023| S.6224| S5.6313| 9.6288) 3.6038| 3.5342) 3.4779| 1 |wirOal
4.9172| 4,9394] 9.0049| S.1009| 95.2%23| 5.4z 5.6165) 3.8295| 6.0435) 8.2667| 6.4908] 1 |@ibson [12]
~10.7325(~10.4119( ~9.4499( -7.84%4| -9.5971( -2.7030( 0.8393( 9.0334] 9.8623( 15.3909| 21.3667| 5 (MLFIN
N, t/m |-10.5493(-10.6305| -9.6717| -8.0667| -5.8050| -2.8729| 0.7461| 3.0709| 10.1215| 15.9189| 22.4847| 1 (MLFTM
-10,6374|~10,3305| -9.4072| -7.8993| -9.6736| -2.8327| 0.8849| 4.9030] 9.8478| 15.3463| 12.0264| 1 |Gibeocn [12)
-0.4385) -0.4492) -0.4218] ~0.3787| -0.3187| ~0.2508| ~0.1817| -0 m:} -0.0540 -0.0120| 0,0000{ 3 [pLrOM
N, t/m | -0.3558) ~0.5445| -0.5112| ~0.4370| —0.3865| -0.3039( -0.2189( -0.1340| -0.0632 -0.0134| 0.0000| L jnLrie
~0,5691| -0,5533| ~0.5186 -0.4632| -0.3909| -0.3066| -0.4172| -0.1311] -0.058a| —0.0098]| 0.0000( L [Gibeoa [12]
0.01%8| 0.0158( o0.01%6] 0.0153| o0.0049| 0.0144| 0.0138| 0.0131] 0.0123| 0.0113| 0.0102] I [MLFIM
¥, te/m | 0.0199( 0.0159 0.06%6( 40.0137( 0.01%| 0.0133) 0.0149| 0.0145( 0.009( 0.0131) 0.0:23( 1 |MLFIN
0.0000| 0.0000 o0.0000 0.0000| 0.0000( O0.0000) O. 0. 0.0000| 0.0000] 0.0000| 1 |8ibson {13]
~0,0373| ~0,0364] —0.0338| ~0.0297| -0.0245] -0.0187| -0.0127| -0.0074| -0.0032| —0.0006]| 0.0000| 5 |NLFOM
B, tm | -0.0419] -0.0409| -0.0379| -0.0332| -0.0272| -0.0204| -0.0134| -0.0073) -0.0029) 0.0003| 0.0000] L |NLFON
-0.0301| -0.0489| -0.0434( -0.0400( -0.0330| -0.0253| -0.0173| ~0.0104| -0.0048 ~0.0012] 0.0000( 1 [Sibecn [13]
6.0000) 0.0128f 0.0247| 0.0341| o0.p410| O.0441| O0.0419| O0.0360f 0.0257| 0.0130| 0.0015] 5 |NLFDM
9, tm 0.0000| 0.0153| oO.0293( 0.0408] oO.0489| 0.0%24| 0.0497| 0.0423] 0.0207| 0.0140| 0.0038| 1 |MLFIM
@.0000{ 0.0170 0.0324| O0.044%| 0.0833] 0.0365] 0.0%542( 0.0464] 0.0338) 0.0174) 0.0000] 1 [Blhlan [B¥)]
Tabls 2. :Displacemente and internal forces at x = 0
3
No of
Q 4 8 12 13 20 M 28 v k] 40 jterss SQURCE
0.3008| 0.2920| 0.2660{ 0.2225( o0.1610[ o0.0809( -0.mes| -0.1381| -0.2788| -0.4d16| -0.6279) = (NLITH
u - 0.2985| 0.2808| 0.2637| 0.2199| 0.1%82| 0.0782| -0.aa08| -0.1386| -0.1764| -0.4343| -0.6137| 1 [NLFIH
0.2902| 0.2819] 0.2%7| 0.2144| 0.1348( 9.0773| -0.me7| -0.1338| -0.2687| -0.4242| -0.6010| 1 |@ibson (121
2.0000] 0.%813] 1.096%] 1.5796] 1.5792] 2.2607] 2.3820] 2.3916| 1.9246] 1.1397] 0.0073] 5 |MELFDM
W, tim a.o000| o.5287| 1.02s8| 1.4617( t.s028| 2.0173| 2.ovzz| 1.9344] 1.5678) 0.9369{ 0.0050| L [WLFDM
“* o.0000| 0.513s| 0.9970| 1.4200| 1.7377| 1.3627| a.0179| 1.8846| 1.3281 0.9124) 0.0000) 1 |Gibson (12|
0.0000] 0.5397| 1.0939] 1.57%2| 1.9737] 2.254a] =2.3730f 2.2843| 1.m72] L.1913] 0.0000{ 5 |HLFDH
K, t/m 9.0000| 0.5278| 1.0248{ 1.4%89( 1.7993( 2.0134{ 2.068z| 1.9297 1.9629( 0.9320( 0.0000) 1 |NLYDH
il 0.0000| 0.3138| o.s970| 1.4203| 1.7%27| 1.se27| 2.0173( 1.se4s| 1.5281| 0.9124) 0.0000| 1 |@ibsen (121
0.0000| -0.0031] -0.0062| -0.0089| -0.0112] -0.0130| -0.0142| -0.0l4g| -0.0130| -0.0148| -0.0147| I |NLFDH
| ta/m | 0.0000] -0.0020] -0.0039| —0.0057| —0.0072| -0.0083) -0.0091) -4.0096| -0.0099( -0.0100| -0.0100) L NLFDM
ne o.p000] o.0000| o.o000| o.ooon| o.0000| o0.ooc0| 0.0000( ©0.0000| 0.0000f O.0000( G.0000( I (Gibson [12]
9.0000| —0.0031| -0.006a| —0.0087| —0.0110] —0.0128| -0_p140| -0.0148] -0.0148| -0.0147| -0.p147| 5 (WLFDM
M. tmm | 0.0000] -0.0020| -0.00%a| -0.003%| —0.0070| —0.0081| -0.0089| -0.06¢4| -0.0097| ~0.0099; -0.0103| L NLFDH
v 0.0000{ 0.0000{ 0.0o0a{ 0.000a{ 0.0000| a.000e| o0.poc0| O0.0008) 0.0000) 0.0000) 0.0000f 1 'umon (121
-0.016%| -0.01%8| -0.0139( -0.0106] -0.0063| -0.0012{ ©0.0043| 0.0096) 0.0137] 0.0136 0.0045) 2 |vron
a4 t/a | -0.0087| -0.0083| -0.0073| —0.00%8| -0.0038| -0.0ma7| 0.oo04| 0.0022| 0.0035) 0.0039| 0.0038) I (HLFDM
- o.0000| 0.0000| 0.0000| 0.0000] 0.0000| o.0000 o0.0000| o.0000{ 0.0000| 0.0000| 0.0000| 1 |Gibson (121
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Examplsa 2 : A simply supported free edged circular cvylindrical shell having
the dimensions shown in Fig. 4 has been analyzed. The shell 15 assumed to be
subjected to concentrated line lcad at the c¢rown, Due te symmetry in  the
circumferential dira%}ion. o%ly half of the shell, divided into thirty-one
nodal lines {A¢ = 60 /30 = 27), is considered 1n the analysis, Two wvalues of
Poi1sson's ratio, v, are considered; these are 0 and 1/6. The analysis was
carried out for five terms of the used basic functions. The obtained results
are presented in Tables 3 and 4. Compared with the definition of shallow
shells, this shell is considered deep. Only the results of the nodal line
finite difference technigue are presented, since Gibson's solufion is not
acceptable for deep shells and not valid for concentrated line loading as
well.
Lins Load = 1 t/m
Lins Load = 1 t/m
IR EEEEEENE N EEREEEEER NEE
i
E‘— L=-9ms 1
2
Fig. 4 E= 210 t/em
Table 3. ;Displacements and intsrnal forces at x = L/2
& 1
Palemon's
o 6 12 18 " 30 5 < 48 54 5 | rape | BOMECE
v -] D.0aos 0.3395 0.6M1 0.5031 1.0364 1.0£13 0. %748 0.7¥81 0. 4749 00704 —0.429% L] |
0.0000 0.3365 0.4655] O0.8947| 1.0348| 1.0455 0.9337| O.7484[ O.4344] 0.0161| —0.301L1 1r¢
v [ ] 4.5385| 3.2842| Z.6491| L.7FTY  0.774R| -0, 2B37| -1.3908| -7.38%0| -3.38W2| —C.3I7¢| -3.147 o
3.4883 3.23%0 2.6049 1.73486 0.7330 —0.3322| -1.4090| -2.4554| -3.4520| —4.4522| ~3.2884 178
N t/m =7.4045) =7.0329) ~3.973&| —.3444| -2.293L 0C.0010 2.329%| 4 458%  6.1BO5| T 3¢ T.4336 1]
" =7.3336 -6.5203| -5.8413( -4.2115| -2.1772( oO.081% 2.3538| 4.4127| 5.0936| 6.93%3| 7.0083 178
Nﬁ [¥; ] =1.3984] ~L.}427| —0.9166| —0.7302| ~0.5356| ~0.4143| -0, 2926 —0.1853| -D.0%44| -0.0F74( 0.0000 [} KLFD |
=1.389%) -1.1343| =0.9114| -0.7184| =0.5518| =0.4121| -0.2919( ~0,289%| —0.0%5% —0.0290 0.0000 L/E |
l(_ w/m 0.0094! 0.0084) 0.0087| 0.0043( 0G.0027| 0.0004| -0.0020| —0.0048| —0.007L| —G.00%8 -0.031% i}
0.0543| 0.0375% 0.034d| 0.0143 0.0071| 0.0013 -5.0028| —0.0080| —O.0084| —0.01p4| -0.01H 176 |
lp win 02649 0.170) 0.1022| O.08544] 0.0230| 0.0038) -p.0081| —-0.009% -0.0079| =0 0044| ©.0000 [ |
D.2704( D0.1735| 0.1672| 0.0582 0.0270| 0.0072 -4.6033| -0.0071] ~0,0065| -0.0037| 0.0000 18 ,
Cl¢ tim 0.000a( 0.38%3] 0.2793) oO.15| 0.1273] 0.075830  0.0%67| 0.0131] -6.0023) -0.00%0) —0.0107 ]
0.0000( 0.38%7| 0.2803| 0.1%33 0.1283| O.07R 00486 D.0181 —0.0002| —0.0072| —H.0083 1/6 |
Tahle 4. :Displacemanta and internal forces at x = {
[
5 oieacn’
0 3 1z 18 7, 30 3% 2 PPy > 50 | ratio | SWACE
u - 0. 2448 D.2297| O.1878( 00264 0.3 0,007 -p.0¥21| —0.1458| -0.1673| -0.1970| -0.1712 [ [
03328 02179 0.1773| 0.1176| 0.0471| —0.0260| -0.0839| -0.14%0| -0.1p33| -0.1893| —0.1%68 ¥
it i/ 0.0000] 1.2065) 2.2547| 1.7857| 2.8931 1.5640 1.1857| 1.3708| 0O.%108| 0.3308| —0.0143 [}
0.0000 1.2713) 2.3238| 2.74M 28475 1.5141 2,1402 1,324 0.5714 0.3087 | -0.0148 176
h“_ im 0.0000| 1.3043| 2.2778] 2.8087| Z.9064| J.4803  2.2074| 1.3877| 0.9373| 0.3470| 0.0000 1
0. 0900 1,286 2.24%| 2.7634| 1.8897| 2.5308 2.1588)  1.53%4| 0.8884| 0.3363|  0.0000 178
lln¢ [ 0.0000| 0.0334| O.0d&1( O.0458] S.0413] Q.0380 0.0333 0.0337| 0.0330| o0.0327| 0.0327 L] MLPLH
o.ooo0] 00298 0.038%| 0.0389] ©0.03&D| 0.0 0.030%| 0.0298| o0.02%4| Q.0293| G.n297 1
1
l&‘ tmAm 0.6000, 0.03%] 0.04630 0.6481 b0 60383 Q03353 |  6.0333) £.033)] 0.0328| 0.0327 L4
b . 0000 0.03.00 0.03%2| G.0393| Co03G&E| 0.03k a.6311 4,030 0.0i96 0.0295 0.02%7 A8
D_ [¥,.] 0.2968| 0.1193| 0.0261| <0.01%4| —0.02M| -0.023| -0.0191| —0.0033| -0.0102| -0.0088 ~¢.007¢ ]
0.2988( 0.1218| 0.0279] —0.0139| -D.0261| ~0.0243| -p.0161| -0.0125| —0.0093| ~0.0079| —0.0070 /6
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CONCLUSION

The present work contributes to the establishment and the extension of the
use of the Author's nodal line finite difference method to include the
analysis of thin elastic isotropic circular cylindrical shells. In the present
analysis, the shell is assumed to be simply supported at the two opposite end
diaphragms. The proposed method i3 considered a semi-analytical procedure
which transforms the threse governing partial differential equations into
three simultaneous nodal line difference equations by means of using
analytical technigue in the longitudinal direction while in  the
circumferential direction, the differential operators are replaced by the well
known difference expressions, The method has the advantage of being simple and
gtraight forward in formulation, so that, it treats the governing partial
differential equations in its complex mathematical form without any
simplifications or assumptions that affect the generality of these equations.
Therefore, the present formulation covers the analysis of short, intermediate,
long, closed, open shallow and open deep circular cylindrical shells.
Moreover, the elements of the final square matrix are symmetrically
distributed around the diagonal in a banded form with small half band width
and this reduces to a great extent the storage requirements and the
computation time. The method can be easily extended to include the dynamic
analysis asg well as the stahility of circular cylindrical shelis.

APPENDIX 1

NOTATION

u, v, w = displacemant componants,

.k mlk,wm‘k = nodal line parameters,

L = length of the shell.

2¢; = total angis of the shell.

A = A = consatant angls hetwsen the nodal lipes.
E = modulus of elasticity.

t =  thickneas of the shell.

= = Poisgon'e ratic.

D = in-plane stiffness of the shell.
B = bending stiffness of the shell.

.Y, 2 ® load intensity components.
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