Mansoura Engineering Journal, (MED, Vol. 27, No. |, March 2002. E. |

SELF-ORGANIZING NEURO-FUZZY CONTROL FOR
UNDERWATER ROBOTIC VEHICLES
Ll abilall LY cilaal pill Lpsscrdt LGN P (a5 U aSailf
A4 Yassien* . M. Sherif*. S. Saraya* . F. Fahmy* . M.R. El-Basyouni ==

*Corresponding authers are at the Computers & Systems Dept.. Faculty of Engineering. Mansoura Universiiy.
** Faculty of Specific Education. Mansoura University

4 4’ L
5 e 3 CAeSata Jar S 3 Zaa 3 0 L L aSany A LU A el A g A Gian ol da
LS ke aSal Al dlad iy L e g RalVE g D g a2y 35 el j Raladl) b At Slay ediaelsS
IR R R L FRUPIP L PR R LG JPURESR PR H SR AV & AN AgSadigs b pill el p it
Ao g el saly B ideall G By o el aUail pesis y JSd e il ddee (Sha e aladl oL 22
JE ke Jemas y ] od peclind adad dla pe U A aed gl Saa aoad TS D Sagd e b sl Al e aidad

ABSTRACT:

Underwater robotic vehicles have become an important tool for various underwater tasks
because thev have greater speed. endurance. and depth capability, as well as a higher factor of safiry,
than human divers. However. most vehicle control ssstem designs have been based on a simplified
vehicle model. which has often resulted in poor performance because the nonlinear and umc-varving
vehiele dvnamics have parameters uncertainty. It 1s desirable to have an advanced control system with
the capability of leaming and adapting to change in the vehicle dvnamies and parameters. The
proposed system is possessing neural network's learming ability. There are no rules inially in the
proposed svstem. Thev are created and adapted as on-line leaming proceeds via simultancous
structure and parameter identification. The identificanion process of the centroller includes both
structurc and parameter learning

I INIRODUCTION

In the past decades. there is growing interest 1n neuro-fuzzy systems (NFS) as they continue to
find success in a wide range of applications. Unfortunately. scientists have discovered that most
existing neuro-fuzzy systems |1.2.3]exhibit several major drawbacks that may eventually lead ro
performance degradation. One of the dmawbacks is the curse of dimensionality or fuzzy mle
explosion. This is an inherent problem in fuzzy logic control systems; that is. teo many fuzzy rules are
used 1o approximate the nput-output function of the svstem because the number of rules zrow
exponentially with the number of input and output vanables, The second one is their lack of abilins 10
extract input-output knowledge from a given set of traming data. Since neuro-fuzzy sysiems are
trained by numerical input-output data, the cause-cffect knowledge 1s hidden in the traming dat and
15 difficult to be extracted. The third one is their inabiliy to re-structure their internal structure: that is.
the fuzzy term sets and the fuzzy rules in their hidden lavers. The key advantage of neoral fuzey
approach over tradittonal ones lies on that the former docsu't require a mathemaueal description of the
system while modeling. Moreover, in eontrast to pure newral or fuzzy methods. the neural fuzzy
method possesses both of their advantages: it brings the low-level learming and computational power
of neural networks into fuzzy systems and provides the high-leve! human-like thinking and rea

1ng
of fuzzy sxstems into newral networks [3]~(3).

A fuzzy svstem eonsists of a bunch of fuzzy [F-THEN nules Cemventionally. the selection of
fuzzy IF-THEN rules often relies on a substantial amount of heunstic obscrvation to express prope
strategy's knowledge. Obviousls. it is difficult for human experts to examine all the mput-output data
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from a complex svstem to find a number of proper rules for the fuzzy system. To cope with this
difficulty. several approaches to generating fuzzy IF-THEN rules from numerical data. an active
research topic in the neural fuzzy area. have been proposed [2],[3].[5]-[12]). Generally. these
approaches consist of two learming phases. the structure learning phase and the parameter leaming
phase. The structure as well as the parameter learning phases are done simultaneousiy in the proposed
scif-constructing neural fuzzy inference network by performing them both for each incoming data.
This abilitv makes the proposed controller suitable for fast on-line learing.

Onc important task in the structure identification of a neural fuzzy network is the partition of the
input space. which influences the number of fuzzy rules generated. We propose in this paper an
on-fine input space partitioning method, which 1s an aligned clustering-based approach. This
method can produce a partition result like the one shown in Fig. 1. Basically, it aligns the
clusters formed in the input space, so it reduces not only the number of rules but also the
number of membership functions under a pre-specified accuracy requircment. The proposed method
creates only the significant membership functions on the universe of discourse of each input vanable
bv using a fuzzy ineasure algorithm.

Figure 1. A partition result using Aligned clustering based approach
2.SIRUCTURE QF THE VEHICLE :

The vehicle is a closcd-framed sphere with cight thrusters and one manipulator (see Figure 2). It
15 capable of maneuvenng with six degrees-of-freedom (DOF) motion: sway. surge. heave, roll, pitch.
and vaw. and it can continuously operate for 3 hours with 25 rechargeable (5 v) lcad-acid battertes.
Vehicle's onboard assembly is a compact and efficient unit [ocated on the upper mounting dish within
the spherical hull. The overall architecture was designed for easy cxpansion to include additional
components. Four vertical thrusters and four horizontal thrusters are used for the omni-directional
motion. Each vertical thruster is paired with a horizontal thruster. and the four pairs are positioned 90
degrees apart along the equator of the spherical vehicle as shown in Fig. 2b(b).[13]

The vehicle possesses inherent which has been developed with a vehicles hyvdrodvnamic thruster
redundancy. Vertical motion is possible using all vertical thruster or just two thrusters. Also. all six
motion is possible with all eight thrusters or just six thrusters (three horizontal thrusters & three
vertical thrusters)

In Fig. 2b(b). numbers 1- 4 annotated to the thrusters correspond (o the vertical thrusters. and
numbers 3-8 correspond 1o the horizontal thrusters. With one vertical thruster failure and ong
harizontal thruster failure. vchicle can still generate motion in all directions Even when twe
horizontal thrusters fail. vehicle navigation to a target location 1n x-v plane can sull be achicied witl
careful path planning. Each thruster is equipped with a hall-effect sensor thar measurcs the outpu
voltage of cach thruster Thruster failure can be casily detected by monitorng these thruster moto
outputs. The blade's spin direction for cach thruster was designed so that the resulting moment frot
the blades angular motion would counteract each other. This way. the net angular moment would b
zero ‘The vehicle navigation sensors include a pressure transducer. 8 acoustic sonars. and an inerty
navigation system (INS). Fig. 3 shows vehicle's navigation and control block diagram. The vehicle
position [x. v. z) and 1ts linear s elocity are estimated by Kalman filter using measurcments from t
cight sonars The vehicles” depth (z) and its velocity are also obtained using measurements from tf
pressure sensor. vehicle's pich. roll and heading which are measured by the INS | 13|
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Figure 2
Closed frame sphere with eight thrusters
and one manipulator Figure 3.Control block diagram

A fuzzy inference svstem consists of a set of fuzzy IF-THEN rules that map values from the
input space to values of the output space. The basic structure of a fuzzy control/decision svstem
conststs of four major compogents:

s A knowledge base, which consists of a set of fuzzy rules and a database that defines the membership
functions used in the fuzzy rules,

¢  An inference mechanism that performs reasoning process to dertve an outpul.

e Fuzzification modules. which transform the crisp inputs tnto appropriate fuzzy sets.

» Defuzzification modules. which convert the inferred fuzzy sets into a crisp output
In the knowledge base. the antccedents of fuzzy rules partition the input space mto a number of
linguistic rerm sets while the consequent eonstituent could be chosen as a fuzzy membership function
to describe the control/decision
action on a given region.
Here the proposal technique is to investigate a neuro-fuzzy svstem wiih a fuzzy rule base consisting of
J fuzzy rules in the following [F-THEN rule structures:

Rulej: 1F x;is A, and ~~and x, is A .
THEN 1, is £, and ~and ¥, is fmy (1)

Where  j= 1.2 I xi(i= 1.2, =, n) and w(k = 1.2, . m) are the input and output variables.
respectivelv, and Aiy are the input fuzzy term sets. £, are output fuzzy (erm sets .

In general. fuzzy svstems are hinguistically understandable because they use fuzzy werm sets i
both antecedents and consequents. Much researches [3[.[%] have been conducted with remarkable
success 1n this twpe of tfuzzy svstems due to its diversified sclection in the shape of membersiip
functions. fuzzy reasoning methods. and defuzzification procedures.

The proposed on-line self-organizing neuro-fuzzy [nference network is a six-layer feed-forsard
multilaver network. Each laver consists of nodes. each of which has some fimite “fan-in” of
connections represented by weight values from other nodes. and “fan-out” of connections o other
nodes [13]

Each node in the system strueture consists of one input integration function and onv output activation
function. The input mtegration funetion (f{*}}combines information. activation. or ¢vidence proyided

by links from other nodes and 15 expressed as.
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where  u™uy". u,® are inputs to the node . w,".w," o

Wy L....wp o are the associated weights, and
the superscript / indicates the layer number.

The output activation function (a()) is expressed as.
node;,y, - a"(nodeg) = a( £y =a™"

The link weight is treated as unity unless we specifyv it .We shall next describe the functions of the
nodes in each of the six lavers of the svstem.

Layer I:

No computation is done in this laver. Each node in this layer,which corresponds to one input variable.
only transmits input values to the next layer directly. That is -

f=u't
and. .
2’ =f ()
The link weight in layer one {w"], is unity.

Layer 2:
Each node in this layer corresponds to one linguistic label (small. large. etc ) of one of the input
variables in Layer 1.
In other words. the membership value which specifies the degree to which an input value belongs to a
fuzzv set is calculated in Layer 2.
There are many choices for the types of membership functions for use. such as triangular. trapczoidal.
or Gaussian ones. With the choice of Gaussian membership function. the operation performed in this
laver 1s -
Flugd V1 = - [u' P -my] 7 o
and
al P (fy=e' (3)

where m, and o, are, respectively. the center (or mean) and the width{or variance) of the Gaussian
membership funetion of the jth term and the ith input variable x,. Hence. the link weight in this laver

can be nterpreted as m,.
Similarly. we can deduce the rest of lavers” equations.

Figure 4. Structure of the proposed system
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4_LEARNING ALGORITHMS FOR THE NEURO-FUZZY CONTROLLER ;

Two tvpes of leaming : structure and parameter leaming arc used concurrently for constructing

the proposed controller.
The structure learning :

Includes both the precondition and consequent structure identification of a fuzzy IF-THEN rule.
The precondition structure identification:

Corresponds to the input-space partitioning and can be formulated as a combinational
optimization problem with the following two objectives:
s to mimumize the number of rules generated
» and to minimize the number of fuzzv sets on the universe of discourse of each input variable.
The consequent structure identification:

The main task is to decide when to generate a new membership function for the output variable
and which significant terms (input variables) should be added to the consequent part {a linear
equation) when necessary.,

The parameter learning:

Based upon supervised leaming algorithms. the parameters of the linear equations in the
consequent parts are adjustcd bv either Least Mean Square(LMS) or Recursive Least Squares(RLS)
algorithms [14] and the parameters in the precondition part are adjusted by the back propagation
algonithm to minimize a given cost function.

Algorithm Structure
Self-Organizing Phase:

The controtler-learning algorithm consists of a self-constructing learning phase and a self-
organizing learming phase. The leamning algorithm proceeds upon receiving an on-line incoming
training data by performing self-constructing learning phase. In this phase of learning, structure
leaming and parameter learming are performed. An aligned clustering-based methed [14] is used to
construct the number of rules and also the nuimber of membership functions for each input vaniable. A
rule in the controller corresponds to a cluster in the input space.

For each incoming pattern x = [x;,Xz. .. . , xn]T_ the firing strength of cach rule can be interpreted
as the degree of the training pattern belonging to a corresponding rule. Similarly. for cach individual
input variable, the firing strength of each term set can be interpreted as the degree of the inpwt
belonging to the corresponding term set. Thus. the information of firing strength can be used to
determine whether to add a new rule or a term set for the incoming pattern. Once the criterion for
generating a new rule is estabiished. the next procedure is to determine whether the generation of a
new term set is required for cach input variable. If the largest firing strength of the existing term sets
is less than the threshold of adding a new term sct. then a aew term set is formed. This same idea is
used to establish the output tcrm sets.

There are no rules {i.c.. no nodes in the network except the ipput—output nodes} in the controller
initially They are created dynamically as learning proceeds upon recciving on-line incoming tramning
data by performing the foilowing learning processes simultanzous|y-

1} input/output space partitioning.

2) construction of fuzzy rules.

3) parameter identification.

In the above. leaming process 1). and 2) belong to the structure leaming phase and 3) belongs to the
parameter learning phase.
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DInput—Qutput Space Partitioning:

The way the input space is partitioned determines the number of rules extracted from training data as
well as the number of fuzzy sets on the universal of discourse of each input vanable. Geometrically. a
rule corresponds to a cluster in the input space, with m, and D, representing the center and variance of
that cluster. For each incoming pattern x the firing strength of a rule can be interpreted as the degree
the incoming pattern bclongs to the corresponding cluster. For computational efficiency, we can use
the firing strength directly as this degree measure:

Fx)=T1, u® {4)

= ea" [Dr (x ~m)JT {0 (x- w3 |

where F' € [0.1] . In the above equation. the term [Difx -mi)} * [(Difx- mt }] is. in fact. the distance
berween x and the center of cluster / . Using this measure, we can obrtain the following criterion for
the generation of a new fuzzy rule.
Let xft) be the newly incoming pattern. Find :

J=arg Ei)((r) F(x) (3)

where c(t) is the number of existing rules at time ¢ .If #/< F{¢). then a new rule is generated where

F(t) € (0,1 is a pre-specified threshold that deeayvs dunng the leaming process.

Once a new rule is generated, the next step is to assign initial centers and widths of the corresponding
membership functions. Since the goal is to minimize an objective function and the centers and widths
are all adjustable [ater in the parameter learning phase, it is of little sense to spend much time on the
assignment of centers and widths for finding a perfect cluster.

Hence. we can simply set :

M- 1= X (6)

|

D{c“)...”: - ﬁd’ag !’ 7
ln(FT)
L

. (7
Iad

according to the first-nearest-neighbor heuristic {9] where # decides the overlap degree between two
clusters. Similar methods are used in [13], [16].

In the proposed controller, the width is taken into account in the degree measure. so for a cluster
with larger width (meaning a larger region 1s covered). fewer rules will be generated in its vicimity
than a cluster with smaller width. this i1s a more reasonable result. '

After a rule is generated. the next step is 10 decompose the multidimensional membership funcuon
formed in [14] and [I5] to the corresponding [-D membership function for cach input variable. For
the Gaussian membership function. the task can be easily done as:

g DO T IDIem] [T ol om0z ) @

Where miy and o iy are. respectivelv. the projected center and width of the membership function in
each dimension. To reduce the number of fuzzy sets of each input variable and o avoid the existence
of tighly similar ones. we should check the simularities between the newis projected membership
function and the existing ones in each input dimension {14)

The whole glgorithm for the generation of new fuzzy rules as well as fuzzy sets in each mput
variable is as follows. Suppose no rules are cxistent initially:
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Let pfm, ) represent the Gaussiun membership function with center mi and i width .
[F |x.d] s the first incoming pattern THEN do
PART . {Generate a new rule with center m,= x, width D, = diog { 1+ & 0. A G
where & ,q is a prespecified constant Afier decompasition. we have n one
dimensional membership functions, with center my, = x;, & width @ 1, - G 1 .
i=12...n
}
ELSE for each newly incoming x, do
PART 2.1 Pfx) - IT o €571 .1 where F € [0.1] is the firing strength of cluster (rule) j
for the incoming pattern x.
find S =arg max Frxt.

I-j_effy

where ¢(t} the number of existing rules at tme t.

IF P> F (1) THEN

do nothing
ELSE
cff~1) =c¢ft) ~ { . generate a new fuzzy rule. with
Mooy = X '
|" A
| 1
Dyenn=-1 f.dia
ﬂ“ g < ! In(FJ ) Inc_!~"l ]

After decamposition. we have

Plaus =%, T pows = ~fLn(F). 1=1 . n

Adding Term Set Nodes :

Find largest firing strength of the existing fuzzy term
set nodes for each input . L_F'fx,}.

IF L_F'(x) > F e (). THEN assign

{ M gen =Meei and O go-ny=C i |

ELSE do
Adopt a new membership funclion with
My api = X, and o fafreii =T nn and set

kf1-71) = ki) - | . where k(1) is the existing number
of a fuzzy term-set nodes for input i at time 1.

1
i

E.7

Where. the threshold £, (1) determines the number of rules generated. & ... ¢ 11 threshold determines

number of term-set nades. 7, (1) determines the number of output clusters generated

2)Construction of Fuzzy Rules :

We have to decide the consequent part of the generated rule Suppose a new nput cluster 1s
formed after the presentation of the current input—cutput training pair (x.d): then the consequent part

is congtructed by the following algorithm:
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[F there are no output clusters THEN
do {PART ! in Process }), with x replaced by d }
ELSE
do !
find J =arg lmax F(x) .

ety
() THEN
connect input cluster ¢fi~{) to the existing output cluster./

ELSE
generate a new output cluster connect input cluster eft+/) to

IF F> F

ol

the newlv generated output cluster,
]
The algorithm is based on the fact that. different preconditions of different rules mayv be mapped to
the same consequent fuzzy set .
3} Parameter [dentification :
After the network structure is adjusted according to the current training pattern. the network

then enters the parameter identification phase to adjust the parameters of the network optimally based
on the same training pattern. Note that the follewing parameter learning is performed on the whole
network after structure learning, no matter whether the nodes (links) are newly added or are existent
onginally The idca of backpropagation is used for this supervised leaming. Considering the single-
output case for clarity, the goal is to minimize the error function

E=%%/y0) -y 9
where v(1) is the desired output and v{t} is the current output.
Self-Adaptive Phase :

In the self<onstructing leaming phase. the controller network is onlv able to grow the numbers
of rules and term sets. Some of the fuzzv rules or term sets could become inappropriate after several
learning iterations. This phenomenon can be easilv observed when the leaming curve becomes
flatiened. That is, performing the parameter learming can no longer further reduce the error caused by
the existing rules and term sets. Hence. a performanee examination procedure is proposed that will
enable the controller network to prune inappropriate rules and term sets based on a cumulative error
performance index [17] and a similaritv measure [3]. respectively.

In our observation. inappropriate rules always cause errors. [n order to examine the performance
of each rule. a cumulatve errar performance index is established for each rule. For each incoming
pattern. the error signal is not only back-propagated to adjust the parameters but is also  accumulated
for the dorminant rule (the rule with the largest firing strength of the existing rules). The cumulative
error will be served as a performance index for identifving an inappropriate rule. The larger the
cumulatine error. the worse the performance of the rule. Thus. based on the cumulatne error
performance index. the rules with bad performance are the candidates to be pruned Note that the
number of rules to be pruned should be exponentially decreasing as the error becomes smalter [18]. The
following significance ndex is established to examine each rule

! .
SJ = Z::l L=l pf (IU)
I x N
where S/ € {0.1] represents the significance of the )" FBF. 2, € [0.11 15 the normalized finng strength
of the 1 rule in Laver 4. / is the number of iterations. and ¥ is the total number of trainmg daia m

each iteration. p,1s defined as
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n
fl;ll‘”rlf.f (x;)
L S e e — (an
_;E-=.||[3|“.4,", (x,?
where. « WSS ) is Guassian membership function defined by :
i
" (.rf]=EIp[—(¥]2] (12)

o
! i

Where m ” and a," are the centers and widths of the Gaussian functions. respectively .

To determine the rule for pruning, we find

k=arg I_r}‘_lij?') S (13

E. 9

where ¢(r) is the number of existing rules at time t. If $* < ¢ . then the K" rule (FBF) is a candidate to
be pruned because it is the least significance (or it was feast fired among all the rules). where p €

[0.1] is a pre-speeified threshold. Next, using the similarity measure. the highly similar term sets are

combined by simply taking the average of centers and selecting the larger width to form a new

membership function. This self-adapting learning phase performs well and is able to prunc some

insignificant rules and fuzzy term sets from the controller svstem to speed up the learning

convergence. This learning phase results in a more concise network structure without sacrificing the

performance. Figure 5 shows the flow chart of the proposed svstem’s learning algorithm .the learning

algorithm proceeds upon receiving every incoming training data by performing the sclf-organizing

learning phase and the self-adapting learning phase simultaneously.
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LCOMPUTER SIMULATIONS :
In this application, controlier is applied to model a control svstem for an autonomous underwater
vehicle . [t is a closed-framed sphere with eight thrusters and one manipulator.

Computer simulations were conducted to demonstrate:

The self-organizing learing and self-adapting abilities of the propoesed system. In order to verify
the performance of the controller system .
The better performance of the proposed controller as compared to an adaptive controller [19].
Stmulations are conducted on the dynamic model [19]). Here we select the initial parameters. K; =
0.011, D=L fi=1. =1, and the imtial value of &, = 0.0 for the adaptive controller (taken from [19]).
By treating the control signals gencrated by the adaptive controller as desired control signals. our
objective is to train the proposed system using the generated traming patterns. Each training pattern
consists of six inputs of position errors and velocitv errors, x = [ e . ¢y . €;. & &, <] . and three
outputs of forces forx, y,and z axes. y = [F . F, . F. | T We neglect the moments about the x. v.and z
axes because they are always very close to zero. In order to reduce the leaming burden. we
decompose the training patterns nto three subsets. each of which consists of the position crror.
velocity error. and force of each axis: that is. the training patterns generated by the adaptive controller
are injeeted separately to three different controller svstems, namely cont_x. cont_v. and cont_z To
generate the training data, all the possible error trajectories are fed into the adaptive controller and the
corresponding force outputs are collected. 80 position errors and 80 wvelocity errors are randomly
sampled from +£0.2 mcters (m) and £0.1 meters/sec for x and v axes. and +0.4m and =0.1 m/sec for z

axis. Selecting the leaming rate 5 = 0.001, F_(1y=025F__(1)=0.6, ¢ . = 0.1 | the similarity

o
threshold p = 0.75, and the significance threshold ® = 107, cach subsvstem is trained with 6,400
training patterns in each epoch. Again. to compare the cffects of the self-adapring phase (rule
examination procedure), two simulations are conducted: (a) without performing the self-adapting
learning phase, and {b) with performing the rufe examination for everv 10 cpochs. In this simulation.
itialty there is no rule in the controller . Table 1 shows the companson of simulations (a) and (b). By
performing the self-adapting learning phase. a significant reduction in the number of fuzzy rules as
well as fuzzy term sets for the proposed controller is observed.

r T G e I ——1
Simulation , Controller No.of Fuzzy term sets | Initial Rule | Final rule
S — S Ne. No.
i 58 Input [ | inputl
Cont_x s fy 31 3
?7 n - - _
, (a} Cont_y 6 § n 3
Cont_z 7 8 33 33
Cont_x s 6 31 16
(b) Cont_» 5 6 31 26

Coat_z 7 7 33 27

Table 1. Comparison between the two simulations
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In our second simulation, the vehicle is asked to perform an edge-following for x. y. and
z axes and a diagonal movement by using the trained controller {from the first simulation
result) and the adaptive controller. In the first planned movement, the vehicle starts at 0.5m
from the bottom of the pool, moves up vertically to 2.5 m, moves along the x axis for 2.0 m,
and then moves along the y axis for 2.0 m. In the second planned movement, the vehicle is
asked to move downward and upward diagonally for 2.0 m. Figure 6 shows the desired
trajectory, the actual trajectories from the adaptive controller and the proposed controller for
the edge-following simulation. Figure 7 shows the error curves of the adaptive controller and
the proposed controller for the edge-following simulation along the x, y, and - axes
Similarly, for the diagonal motion simulation, Figure 8 shows the desired trajectorv. the
actual trajectories from the adaptive controller and the proposed controller. Figure 9 shows
the error curves of the adaptive controller and the proposed controller for the diagonal motion
simulation along the x, y, and z axes. From these simulations and figures, the results show
that the performance of the proposed controller is much better than the existing adaptive
controller for controlling the vehicle.
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Thus paper described an on-line self-adaptive neural fuzzy inference svstem with three different
wpes of IF-THEN rule structures. The proposed system is a multi-lavered feedforward neural network
that reatizes a traditional fuzzy logic system and is capable of seif-organizing and self-adapting its
internal node connectivity and fearning the parameters of each node based on mcoming traming data.

The multi-lavered feedforward connectionist structure of the proposed system incorporates
fuzzy basis ‘functions as a universal  approximator for better svstem performance. Computer
simulations on a real-world application .modeling a control system for autonomous underwates
vehicles. have been conducted to vabidate the effectiveness of the sclt‘-brgamzing and self-adapting

abiliies of the proposed system
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