Basic Electronics Date: 11/1/201 ## Question 1 [25 M] - (1) Define the following terms - a- Semiconductors. b- Doping. c- Diffusion current. d- Zener effect. - (2) Draw and explain briefly the structure and operation of P-N junction diode. - (3) Consider a pn junction in equilibrium at $T=27^{\circ}c$ for which the doping concentration are $N_A=10^{18}/cm^3$ and $N_D=10^{16}/cm^3$ and the cross-sectional area $A=2\times 10^{-4}cm^2$. Where $\epsilon_s=1.04\times 10^{-12}~F/cm$, $n_i=1.5\times 10^{10}~/cm^3$, $V_T=25.9~mV$, $q=1.6\times 10^{-19}~eV$. Calculate the following: - a- Concentration of minority (electrons) in p-region (n_{p0}) . - b- Concentration of minority (holes) in p-region (p_{no}) . - c- Barrier voltage across the junction (v_o) . - d- The width of the depletion layer (w). - e- Width of depletion region in p-region (x_p) . - f- Width of depletion region in n-region (x_n) . - g- Total stored charge on either side of depletion region (Q_I) ## Question 2 [20 M] - (1) For the circuit shown in Figure 1. Calculate I_D , V_o . - (2) For the circuit shown in Figure 2, calculate I_1 , I_2 . I_{D2} . Figure 1 Figure 2 - (3) For the circuit shown in Figure 3 - a- Determine V_L , I_L , I_Z and I_R if $R_L = 180 \Omega$. - b- Repeat (a) if $R_L = 470 \Omega$. - c- Determine the value of R_L that will establish maximum power condition for the zener diode. - d- Determine the minimum value of R_L to ensure that the zener diode is in the "on" state. ## Question 3 [20 M] - (1) For the circuit shown in Figure 4, draw i_R and v_o for the input v_i . - (2) Draw v_o for the circuit shown in Figure 5 Figure 4 Figure 5 ## Question 4 [25 M] - (1) For the BJT circuit shown in Figure 6 determine: I_B , I_C , V_B , V_C , V_E . - (2) For the FET circuit shown in Figure 7 determine: V_G , I_D , V_G , V_S , V_D . Figure 6 Figure 7 Good Luck Dr. Eng. / Mohamed Saber