Basic Electronics
Date: 11/1/201

Question 1 [25 M]

- (1) Define the following terms
 - a- Semiconductors. b- Doping. c- Diffusion current. d- Zener effect.
- (2) Draw and explain briefly the structure and operation of P-N junction diode.
- (3) Consider a pn junction in equilibrium at $T=27^{\circ}c$ for which the doping concentration are $N_A=10^{18}/cm^3$ and $N_D=10^{16}/cm^3$ and the cross-sectional area $A=2\times 10^{-4}cm^2$. Where $\epsilon_s=1.04\times 10^{-12}~F/cm$, $n_i=1.5\times 10^{10}~/cm^3$, $V_T=25.9~mV$, $q=1.6\times 10^{-19}~eV$. Calculate the following:
 - a- Concentration of minority (electrons) in p-region (n_{p0}) .
 - b- Concentration of minority (holes) in p-region (p_{no}) .
 - c- Barrier voltage across the junction (v_o) .
 - d- The width of the depletion layer (w).
 - e- Width of depletion region in p-region (x_p) .
 - f- Width of depletion region in n-region (x_n) .
 - g- Total stored charge on either side of depletion region (Q_I)

Question 2 [20 M]

- (1) For the circuit shown in Figure 1. Calculate I_D , V_o .
- (2) For the circuit shown in Figure 2, calculate I_1 , I_2 . I_{D2} .

Figure 1

Figure 2

- (3) For the circuit shown in Figure 3
 - a- Determine V_L , I_L , I_Z and I_R if $R_L = 180 \Omega$.
 - b- Repeat (a) if $R_L = 470 \Omega$.
 - c- Determine the value of R_L that will establish maximum power condition for the zener diode.
 - d- Determine the minimum value of R_L to ensure that the zener diode is in the "on" state.

Question 3 [20 M]

- (1) For the circuit shown in Figure 4, draw i_R and v_o for the input v_i .
- (2) Draw v_o for the circuit shown in Figure 5

Figure 4

Figure 5

Question 4 [25 M]

- (1) For the BJT circuit shown in Figure 6 determine: I_B , I_C , V_B , V_C , V_E .
- (2) For the FET circuit shown in Figure 7 determine: V_G , I_D , V_G , V_S , V_D .

Figure 6

Figure 7

Good Luck

Dr. Eng. / Mohamed Saber