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ABSTRACT 
Delamination is a well-recognized problem associated with drilling fiber reinforced composite 
materials (FRCMs). The most noted problems occur as the drill enters and exits the FRCM. A 
method based on the artificial neural networks (ANNs) technique was used to predict delamination 
size resulting itom drilling glass fiber reinforced epoxy (GERE) laminates at both drill entry and 
exit sides of the hole. The experimental work that was performed to provide the data used to 
develop the required ANNs was presented in [I]. From the statistical analysis, using correlation 
coefficients between the target and the output values from the ANN, it is concluded that the 
obtained ANNs can be used effectively to model and predict delamination size at both drill entry 
and exit sides. 
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1. INTRODUCTION 
Machining composite materials is a rather complex 
task owing to its heterogeneity, heat sensitivity, and 
to the fact that reinforcements are extremely abrasive. 
Conventional machiming methods should be adapted 
in such a way that they diminish thermal and 
mechanical damage. Drilling is a frequently practiced 
machiming process in industry owing to the need for 
component assembly in mechanical pieces and 
structures. The drilling of laminate composite 
materials is significantly affected by the tendency of 
these materials to delaminate and the fibers to bond 
from the matrix under the action of machining forces 
(thrust force and torque). The presence of 
delamination reduces the stif&ess and strength of a 
laminate and hence its load canying capacity. 
Delamination can often be the limiting factor in the 
use of composite materials for structural applications, 
pmicularly when subjected to compressive, shear 
and fatigue type of loads and when exposed to 
moisture and other aggressive environments over a 
long period of time. 
Artificial neural networks (ANNs) have recently 
been introduced into the field of polymer composites. 
Inspired by the biological nervous system, ANNs can 

be used to solve a wide variety of complex scientiiic 
and engineering problems. Like fheir biological 
counterparts, ANNs can learn &om examples, and 
therefore can be trained to fid solutions of the 
complex non-linear, multi-dimensional functional 
relationships without any prior assumptions about 
their nature; further, the network is built directly 
from experimental data by its self-organizing 
capabilities [2]. 
Ho-Cheng and Dharan [3] presented an analysis of 
delamination during drilling of composite materials 
using fracture mechanics approach. The analysis 
predicts an optimal thrust force (deiined as the 
minimum force above which delamination is initiated) 
as a function of drilled hole depth and material 
properlies. Iain and Yang [4] proposed an analytical 
model based on fracture mechanics to predict critical 
thrusts and feed rates at which the delamination crack 
begins to propagate at different ply levels for 
unidirectional laminates. Jain and Yang [ 5 ]  
demonstrated that the critical thrusts and feed rates 
obtained for unidirectional laminates can be 
conservatively used for multi-directional laminates. 
Stone and Kishnamurthy [b] developed a thrust force 
controller to minimize the delamination associated 
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with drilling in graphite-epoxy laminate. A neural 
nehvork control scheme was implemented which 
required a neural network identifier to model the 
drilling dynamics and a neural network controller to 
learn the relationship between feed rate and the 
desired thrust force. The robustness of the controller 
was demonstrated by varying some of the drilling 
parameters, spindle speed and drill diameter. Sadat [7] 
used an analytical approach to predict the 
delamination load (the h'ust force that causes 
delamination at a given ply location) in a drilling of 
graphitel epoxy multilayered (angle-ply) composite 
laminates. In his work, it was assumed that 
delamination was caused by the thrust force of the 
drill, and a relation for delamination load as a 
function of material properties and uncut plies 
thickness was determined. Enemuoh et al [8] used an 
intelligent sensor fusion technique based on artificial 
neural network to predict on-line delamination during 
drilling of an advanced fiber composite beam 
(AS4PEEK). The fusion model included two drilling 
parameters (feed rate and cutting speed), two drilling 
conditions (tool material and tool geometry) and two 
sensors (thrust force and acoustic emission). 

Chakraborty [9] aimed at developing an artificial 
neural network model for detection of extent of 
delamination, its shape and location in a 
graphitelepoxy composite laminate using natural 
frequencies as inputs and corresponding sue, shape 
and location of delamination as outputs of the 
network. Hundreds of finite element models have 
been run to generate natural frequencies up to ten 
modes for various combinations of sue, shape and 
location of an embedded delamination in a laminate 
and these data have been used to train a back 
propagation neural network for future prediction of 
delamination in the laminate. 
Sardiiias et al [lo] proposed a multi-objective 
optimization of the drilling process of a laminate 
composite material. Two mutually conflicting 
objectives are optimized: material removal rate, 
which represents the productivity; and delamination 
factor, which characterizes the superficial quality. A 
micro-genetic algorithm was implemented to carry 
out the optimization process. An a posteriori 
approach was used to obtain a set of optimal 
solutions. Finally, the obtained outcomes were 
arranged in graphical form (Pareto's front) and 
analyzed to make the proper decision for different 
process preferences. 
Srinivasa Rao et al [I 11 used the multi-variable linear 
regression analysis to make the correlation between 
the delamination factor and the drilling parameters; 
feed rate, spindle speed and drill diameter, when 
drilling glass/epoxy woven mat cross-ply laminates. 
Kamik et a1 [I21 predicted the delamination factor at 
the entrance side of drilled CFRP plates, using the 

multilayer feed forward ANN n~odel trained by error- 
back propagation training algorithm, with spindle 
speed, feed rate and point angle as the inputs to the 
developed ANN. Drilling expc:riments are conducted 
as per full factorial design using cemented carbide 
(grade K20) twist drills that serve as input-output 
pattems for ANN training. 
This paper summarizes an approach for prediction of 
delamination size, both at drill entry and exit sides, 
resulting from drilling GFRE specimens, using the 
feed-forward artificial neural networks (AN%) 
technique Pained with the back-propagation routine. 
The inputs to the neural network were drill diameter, 
spindle speed, feed, drill pre-wear, thrust force, and 
torque. 

2. DATA FOR DEVELOPMENT OF ANNs 
Artificial neural network algorithms are regarded as 
multivariate nonlinear analyical tools capable of 
recognizing patterns from noisy complex data and 
estimating their nonlinear relationships. Their 
advantages include superlor learning, noise 
suppression, and parallel data processing capabilities 
[13]. Further, the network .s built directly from 
experimental data by its self-organizing capabilities 
r"> 

LLJ. 

Experimental work was perfomed in order to obtain 
the data required to train, .validate and test the 
developed ANNs. E-glass Eber reinforced epoxy 
(GFRE) woven roving composite specimens were 
manufactured using hand lay-up technique [14]. 
Specimens were machined using cemented carbide 
drills with two diameters 0 8  and Q13 mm. The 
workpieces were drilled with five spindle speeds, 
five feeds and five drill pre-wear values (fresh drill 
plus four artificially introduced pre-wear values) with 
a backing plate has a center hole of 26 mm under dry 
cutting conditions. The details about the experimental 
work and the specification of' .the GFRE specimens 
were presented in [I]. At the end of the experimental 
work there were 250 holes (125 holes for each drill 
diameter) plus 25 holes machined with cutting 
conditions different from that of the experimental 
work for the purpose of testing the developed neural 
networks for generalization. 

3. RESULTS AND DISCUSSION 
In order to develop the required neural networks, 
from all of the holes that were machined in the 
experimental work, holes were selected randomly as; 
200 holes for training patterns, 50 holes for cross 
validation patterns (which were used as a training 
stoppage criterion [15]), and 25 holes were used as 
test patterns. 
All of the developed A m i s  are of multi-layer 
perceptron type and trained using the back- 
propagation routine [16,17]. A NeuroSolutions 
software (version 5) [18] wa:; used in the training, 
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validating and testing process of the developed neural 
networks. For training, a value of 0.7 was selected 
for the momentum term, a starting value of 1.0 was 
assigned for the learning rate, and maximum epochs 
of 40,000 were chosen with batch weight update 
method. 

3.1 ANNs for Thrust Force and Torque 
Prediction 

Among the inputs to the ANNs for delamination size 
prediction, there are thrust force and torque. Thus, 
before using the developed networks, thrust force and 
torque generated during the drilling process should 
be predicted m order to eliminate the need for 
measuring each of thrust force and torque at every 
prediction process of delamination size. 
To obtain the best neural network structure, nineteen 
neural networks were developed by changing both of 
the number of hidden layers and the number of 
hidden units within each hidden layer. 

(I) ANNs for thrust force prediction 
Figure 1 shows the schematic diagram of the neural 
net for predicting the thrust force (Fd. Four inputs 
were fed to the network; spindle speed, feed, drill 
pre-wear and drill diameter. 
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Fig. 1 Schematic diagram of the neural network for 
predictiog t k t  force. 

Table 1 represents the tried neural networks that were 
used for the prediction of F,. From the Table it can be 
seen that the best neural network for predicting F, is 
the net which has the structure of 4 input units, 4 
hidden units in fnst hidden layer, 6 hidden units in 
second hidden layer and one output node (FJ where 
its test data set error is the lowest value (685.92 N'). 
Fig. 2 shows the relationship between the measured 
and the predicted values of F, for this best net, 
including the results of training, validation and test 
data sets. 
(2) ANNs for Torque Prediction 
Figure 3 shows the schematic diagram of the neural 
net for predicting the torque Q. Four inputs were 

fed to the network; spindle speed, feed, drill pre-wear 
and drill diameter. 
Table 1 Trials for the ANNs for predicting thrust 

force 

* The best network sh'ucture. 
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Fig. 2 Relationship between actual (desired) and 
predicted (output) values of the best obtained 

network for predicting thrust force. 

Table 2 represents the tried neural networks that were 
used for the prediction of T. From the Table it can be 
seen that the best neural network for predicting T is 
the net which has the stmctore of 4 input units, 2 
hidden units in fast hidden layer, 2 hidden units in 
second hidden layer and one output node (T) where 
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its test data set error is the lowest value (0.0094 
(N.m)'). 
Fig. 4 shows the relationship between the measured 
(target) and the predicted (output) values of T for this 
best net, including the results of training, validation 
and test data sets. 
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Fig. 3 Schematic diagram of the neural network for 

predicting torque. 

Table 2 Trials for the ANNs for ~redicting torque 

*The best network structure. 

3.2 ANNs for Delamination Size Prediction 
Figure 5 shows the schematic diagram of the neural 
net for predicting the delamination size at drill 
entrance and drill exit. For each output, six inputs 
were fed to the network (drill diameter, spindle 
speed, feed, drill pre-wear, thrust force, and torque). 
The value of the thrust force and torque that is fed to 
the ANNs is the average value of the maximum five 
peaks in drilling process of the hole. 

0 0.5 1 1.5 

Desired Output (Xm) 
Fig. 4 Relationship between actual (desired) and 

predicted (output) values ol'the best obtained 
network for predicting torque. 

To obtain the best neural network structure, twenty- 
seven neural networks were developed by changing 
both of the number of hidden layers and the number 
of hidden units within each hidden layer. Tables 3 
and 4 represent the tried networks for predicting 
delamination at drill enhy and exit sides respectively. 
Actually, each network in the Table was obtained by 
training five times (runs) starting with five different 
initial weight values, the run and epoch numbers 
which gave the minimum mean square error (MSE) 
of the validation sets were chosen as the required net. 
The criterion of selecting the best net from the tried 
networks is the minimum mean square of the 
differences between the measured and the predicted 
values obtained from the net (MSE), applied for the 
test data sets. So, from Tables 3 and 4 the best 
network structures for predicting delamination size at 
hole entry and exit sides are 6-18-1 (with a MSE of 
0.1194 mm2) and 6-6-6-1 (with a MSE of 0.2557 
mm2) respectively. 
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Fig. 5 Schematic diagram of the neural network for 
predicting delamination size at bi l l  entrance and exit 

sides. 
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Figures 6 and 7 illustrate the relationships between 
the actual (desired) and predicted.(network output) 
values of the best obtained neural network stmctures 
for predicting delamination at hole entry and exit 
respectively. In order to investigate the performance 
of the best obtained networks, correlation coefficients 
between the targets and the corresponding network 
outputs . (actual-predicted relationship) were 
estimated. Correlation coefficient is a measure of 
how well the variation in the outputs is explained by 
the targets, if the number is equal to 1, it means that 
there is a perfect correlation between the targets and 
the ANNs outputs. 
Table 5 shows the values of the correlation 
coefficients for each of training, validation and test 
data sets for the developed ANNs. From this Table, it 
is clear that the values of the correlation coefficients 
approach to 1 which give strong indication that the 
obtained ANNs can be used effectively to model and 
predict thrust force, torque as well as delamination 
size at both drill entrance and exit sides. 
Table 3 , Trials for the ANNs for predicting 

delamination at drill entrance 

* The best network structure 

* The best network structure 

0 
0 0.4 0.8 1.2 1.6 2 

Desired Out~ut (mm.) 
Fig. 6 Relatiomhip betweenact& (desired) and 

predicted (output) values of the best obtained 
network for predicting delamination size at drill 

entrance. 
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~ e s i i e d  Output (xnm.) 
Fig. 7 Relationship between actual (desired) and 

predicted (output) values of the best obtained 
network for predicting delamination zt drill exit 

Table 5 Correlation coefficients for training, 
validation and test data sets 

Correlation coefficients 1 
Training Validation Test Data 

Best I Data Set I Data Set 1 Set 

T h s t  force 0,995 (4-4-6-1) 0.992 0.992 

4. CONCLUSIONS 
In this work the artificial neural networks technique, 
with back-propagation training routine, was used for 
the prediction of delamination size, resulting from 
drilling GFRE specimens, at drill entrance and exit 
sides. Secondary A N N  were developed to predict 
the generated thrust force and torque instead of 
measuring them every time a delamination prediction 
process was performed. Several attempts were made 
to obtain the best structure of these networks. The 
results obtained lead to the following conclusions; 

The best obtained network structure for predicting 
t h s t  force was 4-4-6-1. With a mean-squared 
error of 685.92 N2 for the test data set. 

0 The best obtained network slNChlre for predicting 
torque was 4-2-2-1. With a mean-squared error of 
0.0094 (~ .m) '  for the test dau set. 

The best obtained network slructure for predicting 
delamination size at drill eilhy side was 6-18-1. 
With a mean-squared error of 0.1 194 mm2 for the 
test data set. 

The best obtained network slructure for predicting 
delamination sue at drill exit side was 6-6-6-1. 
With a mean-squared error of 0.2557 nud for the 
test data set. 

As the correlation coefficients for each of training, 
validation and test data spts for the developed 
networks approach to 1, thc best obtained ANNs 
can be effectively used to model and predict thrust 
force, torque as well as delamination size at both 
drill entrance and exit sides. 
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