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ABSTRACT

‘Delamination is a well-recognized problem associated with drilling fiber reinforced composite

materials (FRCMs). The most noted problems occur as the drill enters and exits the FRCM. A
method based on the artificial neural networks {(ANNs) technique was used to predict delamination
size resulting from drilling glass fiber reinforced epoxy (GFRE) laminates ai both drill entry and
exit sides of the hole, The experimental work that was performed to provide the data used to
develop the required ANNs was presented in [1]. From the statistical analysis, using correlation
coefficients between the target and the output values from the ANN, it is concluded that the
obtained ANNs can be used effectively to model and predict delamination size at both drill entry
and exit sides. _
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1. INTRODUCTION

Machining composite materials is a rather complex
task owing to its heterogeneity, heat sensitivity, and

to the fact that reinforcements are extremely abrasive,

Conventional machining methods should be adapted
in such a way that they diminish thermal and
mechanical damage. Drilling is a frequently practiced
machining process in industry owing to the need for
component assembly in mechanjcal pieces and
structures. The drilling of laminate composite
materials is significantly affected by the tendency of
these materials to delaminate and the fibers to bond
from the matrix under the action of machining forces
(thrust force and torque). The presence of
delamination reduces the stiffitess and strength of a
laminate and hence its load carrying capacity.
Delamination can often be the limiting factor in the
use of composite, materials for structural applications,
particnlarly when subjected to compressive, shear
and fatigue type of loads and when exposed to
moisture and other aggressive environments over a
long period of time.

Axrtificial neural networks (ANNs) have recently
been introduced into the field of polymer composites.
Inspired by the biological nervous system, ANNs can

be used to solve a wide variety of complex scientific
and engineering problems. Like their biological
counterparts, ANNs can learn from examples, and
therefore can be trained to find solutions of the
complex non-linear, multi-dimensional fimctional
relationships without any prior assumptions about
their nature; further, the network is built directly
from experimental data by its self-organizing
capabilities [2].

Ho-Cheng and Dharan [3] presented an analysis of
delamination during drilling of composite materials
using fracture mechanics approach. The analysis
predicts an optimal thrust force (defined as the
minimum force above which delamination is initiated)
as a function of drilled hole depth and material
properlies, Jain and Yang [4] propesed an analytical
model based on fracture mechanics to predict critical
thrusts and feed rates at which the delamination crack
begins to propagate at different ply levels for
unidirectional laminates. Jain and Yang [5]
demonstrated that the critical thrusts and feed rates
obtained for umidirectional laminates can be
conservatively used for multi-directional laminates.

Stone and Kishnamurthy (6] developed a thrust force
controller to minimize the delamination associated
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with drilling in graphite-epoxy laminate. A neural
network control scheme was implemented which
required a neural network identifier to model the
drilling dynamics and a neural network controlier to
learn the relationship between feed rate and the
desired thrust force. The robustness of the controller
was demonstrated by varying some of the drilling
parameters, spindle speed and drill diameter. Sadat [7]
used an analytical approach to predict the
delamination load (the trust force that causes
delamination at 2 given ply location) in a drilling of
graphite/ epoxy multilayered (angle-ply) composite
laminates. In his work, it was assumed that
delamination was caused by the thrust force of the
drill, and a relation for delamination load as a
function of material properties and uncut plies
thickness was determined. Enemuoh et al [8] used an
intelligent sensor fusion technique based on artificial
neural network to predict on-line delamination during
drilling of an advanced fiber composite beam
{AS4/PEEK). The fusion model included two drilling
parameters (feed rate and cutting speed), two drilling
conditions (tool material and tool geometry) and two
sensors (thrust force and acoustic emission).

Chakraborty [9] aimed at developing an artificial
neural network model for detection of extent of
delamination, its shape and location in a
graphite/epoxy composite laminate using natural
frequencies as inputs and corresponding size, shape
and location of delamination as outputs of the
network. Hundreds of finite element models have
been run to generate natural frequencies up to ten
modes for various combinations of size, shape and
location of an embedded delamination in a laminate
and these data have been used to train a back
propagation neural network for future prediction of
delamination in the laminate.

Sardifias et al [10] proposed a multi-objective
optimization of the drilling process of a laminate
composite material. Two mutually conflicting
objectives are optimized: material removal rate,
which represents the productivity; and delamination
factor, which characterizes the superficial quality. A
micro-genetic algorithm was implemented to carry
out the optimization process. An a posteriori
approach was used to obtain a set of optimal
solutions. Finally, the obtained outcomnes were
arranged in graphical form (Pareto’s front) and
analyzed to make the proper decision for different
process preferences.

Srinivasa Rao et al [11] used the multi-variable linear
regression analysis to make the correlation between
the delamination factor and the drilling parameters;
feed rate, spindle speed and drill diameter, when
drilling glass/epoxy woven mat cross-ply laminates.
Kamik et al [12] predicted the delamination factor at
the entrance side of drilled CFRP plates, using the

multilayer feed forward ANN model traineﬁ by error-
back propagation training algorithm, \_Vlth spindle
speed, feed rate and point angle as the inputs to the
developed ANN. Drilling experiments are conducted
as per full factorial design using cemented carbide
{grade K20) twist drills that serve as input—output
patterns for ANN training.

This paper summatizes an approach for prediction of
delamination size, both at drill entry and exit sides,
resulting from drilling GFRE specimens, using the
feed-forward artificial peural networks (ANN3)
technique trained with the back-propagation routine.
The inputs to the neural network were drill diameter,
spindle speed, feed, drill pre-wear, thrust force, and
torque.

2. DATA FOR DEVELOPMENT OF ANNs

Artificial neural network algorithms are regarded as
multivariate nonlinear analytical tools capable of
recognizing patterns from noisy complex data and
estimating their nonlinear relationships. Their major
advantages include superior learning, noise
suppression, and parallel data processing capabilities
[13]. Further, the network s built directly from
experimental data by its self-organizing capabilities
[2].

Experimental work was performed in order to obrain
the data required to train, validate and test the
developed ANNs. E-glass f'ber reinforced epoxy
(GFRE) woven roving composite specimens were
manufactured using hand lay-up techmique [14].
Specimens were machined using cemented carbide
drills with two diameters ®8 and @13 mm. The
workpieces were drilled with five spindle speeds,
five feeds and five drill pre-wear values {fresh drill
plus four artificially introduced pre-wear values) with
a backing plate has a center hole of 26 mm under dry
cutting conditions, The details about the experimental
work and the specification of the GFRE specimens
were presented in [1]. At the end of the experimental
work there were 250 holes (125 holes for each drill
diameter} plus 25 holes machined with cutting
conditions different from that of the experimental
work for the purpose of testing the developed neural
networks for generalization.

3. RESULFS AND DISCUSSEON

In order to develop the required neural networks,
from all of the holes that were machined in the
experimental work, holes were selected randomly as;
200 holes for training patterns, 50 holes for cross
validation patterns (which were used as a training
stoppage criterion [151), and 25 holes were used as
test patterns.

All of the developed ANNg are of ymlti-layer
perceptron type and tained using the back-
propagation routine [16,17]), A NeuroSolutions
software (version 5) [18] was used in the training,
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validating and testing process of the developed neural
networks. For training, a value of 0.7 was-selected
for the momentum term, a starting value of 1.0 was
assigned for the learning rate, and maximum epochs
of 40,000 were chosen with batch weight update
method.

3.1 ANNs for Thrust Force and Torque
Prediction

Among the inputs to the ANNs for delamination size
prediction, there are thrust force and torque. Thus,
before using the developed networks, thrust force and
torque generated during the drilling process should
be predicted in order to eliminate the need for
measuring each of thrust force and torque at every
prediction process of delamination size.

To obtain the best neural network structure, nineteen
neural networks were developed by changing both of
the number of hidden layers and the number of
hidden units within each hidden layer.

(1) ANNs for thrust force prediction

Figure 1 shows the schematic diagram of the neural
net for predicting the thrust force (F). Four inputs
were fed to the network; spindle speed, feed, drill
pre~-wear and drill diameter.

Hidden
Layec(s}
Tnits
npait o
Layey
Unify

Inpuf Infornation

Spadle speed

Fead -

Drill pre-wear

Deill diameter

Output Informailon

Fig. 1 Schematic diagram of the neural network for
predicting thrust force.

Table 1 represents the tried neural networks that were
used for the prediction of F,. From the Table it can be
seen that the best neural network for predicting F, is
the pet which has the structure of 4 input umits, 4
hidden units in first hidden layer, 6 hidden units in
second hidden layer and one output node (F) where
its test data set error is the lowest value (685.92 N7,
Fig. 2 shows the relationship between the measured
and the predicted values of F; for this best nct,
including the results of training, validation and test
data sets.

(2} ANN5s for Torque Prediction

Figure 3 shows the schematic diagram of the neural
net for predicting the torque {T). Four imputs were

fed to the network; spindle speed, feed, dril pfe—wear
and drill diameter. :

Table 1 Trials for the ANNs for predicting thrust
force

Network Training | Validation { Test Set
| Structure | SetMSE | Set MSE MSE
) (N} )

2
=]

4-2-1 3064.43 4215.79 2046.56

4-4-1 852.80 1641.96 3766.13

4-6-1 413.93 1093.04 1260.83

4-8-1 311,79 870.57 1349.23

4-10-1 225.76 764.06 2869.18

4-12-1 163.20 663.40 3501.07

4-2-2-1 1891.31 311048 6460.15

4-2-4-1 1893.41 3107.27 4484.77

Wi~ (h|{a it

4-4-2-1 635.94 1040.81 1130.97

10 | 4-4-4-1 519.75 870.50 1246.73

11 | 4-4-6-1* | 440.94 1090.87 685.92

12 | 4-6-4-1 285.34 864.77 1223.04

13 | 4-6-6-1 304.80 760.32 939.15

14 | 4-6-8-1 30711 653.40 1071.55

15 | 4-8-6-1 277.69 550.78 1654.97

16 | 4-8-8-1 257.96 643.75 3548.74

17 | 4-8-10-1 191.12 702.85 1275.64

18 | 4-10-8-1 236.48 510.98 2408.76

19 | 4-10-10-1 133.48 44347 4481.59

* The best network structure.
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Fig. 2 Relationship between actual (desired) and
predicted (output) values of the best obtained
network for predicting thrust force.

Table 2 represents the tried neural networks that were
used for the prediction of T. From the Table it can be
scen that the best neural network for predicting T is
the net which has the structure of 4 input units, 2
hidden units in first hidden layer, 2 hidden units in
second hidden layer and one outpuf node (T) where
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its test data set error is the lowest value (0.0094
(N.m)*).

Fig. 4 shows the relationship between the measured
(target) and the predicted (output) values of T for this
best net, including the results of training, validation
and test data sets.
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Fig. 3 Schermatic diagram of the neural network for
predicting torque.

Table 2 Trials for the ANNSs for predicting torque

Network Training | Validation | Test Set
Ne. Structure Set MSzE Set MS2E MSE2
{(N.m) {N.m)’ (N.m)
l 4-2-1 0.0171 0.0133 (.0184
2 4-4-1 0.0049 0.0053 0.0116
3 4-6-1 0.0054 0.0058 0.0216
4 4-8-1 0.0054 0.0056 0.0265
5 4-10-1 0.0067 0.0056 0.0202
6 4-12-1 0.0042 0.0059 0.0219
7 | 4-2-2-1* 0.0066 0.0057 0.0094
8 4-2-4-1 (.0060 0.0062 0.0116
9 4-4-2-1 0.0067 0.0058 0.0220
0| 4-4-4-1 0.0044 0.0055 0.0126
11 4-4-6-1 0.0055 0.0056 0.0220
12 | 4-6-4-1 0.0025 0.0057 (.0250
[3 4-6-6-1 0.0026 0.0053 0.0162
14| 4-6-8-1 0.0027 0.0048 0.0135
15 4-8-6-1 0.0011 0.0040 0.0208
16 | 4-8-8-1 0.0008 0.0050 0.0186
17 | 4-8-10-1 0.0016 0.0049 (.0194
18 | 4-10-8-1 0.0007 0.0049 (.0205
19 | 4-10-10-1 0.0028 0.0057 0.0278
* The best network structure.

3.2 ANNs for Delamination Size Prediction

Figure 5 shows the schematic diagram of the neural
net for predicting the delamination size at drill
entrance and drill exit. For each output, six inputs
were fed to the network (drill diameter, spindle
speed, feed, drill pre-wear, thrust force, and torque).
The value of the thrust force and torque that is fed to
the ANNs is the average value of the maximum five
peaks in drilling process of the hole.
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Fig. 4 Relationship between actual (desired) and
predicted (output) values of the best obtained
network for predicting torque.

To obtain the best neural network structure, twenty-
sevent neural networks were developed by changing
both of the number of hidden layers and the number
of hidden units within each hidden layer. Tables 3
and 4 represent the tried networks for predicting
delamination at drill entry and exit sides respectively.
Actually, each network in the Table was obtained by
training five times (runs) starting with five different
initial weight values, the run and epoch numbers
which gave the minimum mean square error (MSE)
of the validation sets were chosen as the required net.
The criterion of selecting the best net from the tried
networks is the minimum mean square of the
differences between the measwed and the predicted
values obtained from the net (MSE), applied for the
test data sets. So, from Tables 3 and 4 the best
network structures for predicting delamination size at
hole entry and exit sides are 6-18-1 (with a MSE of
0.1194 mm2) and 6-6-6-1 (with a MSE of 0.2557
mm2) respectively.
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Fig. 5 Schematic diagram of the neural network for
predicting delamination size at drill entrance and exit
sides.
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Figures 6 and 7 illustrate the relationships between .

the actual (desired) and predicted: (network output)
values of the best obtained neural network siructures

Table 4 Trials for the ANNs for predicting
delamination at drill exit

Network Training Validation | Test Set
Set MSE | Set MSE MSE

for predicting delamination at hole entry and exit No.

respectively. In order to investigate the performance Structure |~ 0% (rom?) (mn??)
of the best obtained networks, correlation coefficients 1 521 0.1657 0.0911 0.3859
between the targets and the corresponding network > 641 0.1108 0.0623 0.3978
outputs . (actual-predicted  relationship) = were 3 6-6-1 0'1170 0' 0639 0' 4225
estimated. Correlation coefficient is a measure of ) X 0'1 075 0.06 47 0' 4052
how well the variation in the outputs is explained by 5 510-1 0'1 115 0'0 20 0-28 51
the targets, if the number is equal to 1, it means that 3 PRTE] 0’0750 0‘ %610 0. 4552
there is a perfect correlation between the targets and 5 FRYR] 0' 052 0'0 562 O. 3256
the ANNs outputs. , 8§ | 6.16-1 | 00974 | 00599 | 03315
Table 5 shows the values of the cormelation 9 6-18-1 0.0899 0.0603 0.4750
coefficients for each of training, validation and test 01 620-1 0.0798 0.0596 0.4670
data sets for the developed ANNs. From this Table, it 11 6221 0.1366 0.0831 03143
is clear that the values of the cotrelation coefficients 21 6451 0.0882 0.0627 0.3337
approach to 1 which give strong indication that the 13 1 6241 0'11 ) 0'0680 0'3 414
obtained ANNs can be used effectively to model and i | 6441 0.0778 0' 0619 0'3 337
predict tbrusdtIl force, torque as well as delamination 51 63551 0' 0996 0'0 505 0-2872

size at both drill entrance and exit sides. - - -

. 1 -4-6-1 R . A
Table 3 Trals for the ANNs for predicting 1?; (65—2-2-1 gi?iz 332?;5 g;g?g
delamination at drill entrance 78| 6661 | 0005 | 0.0605 | 0.2587
Network | Training Validation | Test Set 19 | 6-68-1 | 0.0904 0.0580 0.4711
No.|groover | Set MSE | SetMSE |  MSE 20 | 686-1 | 0.0058 | 00500 | 03078
(mm’) (n1 ) (mm) 21| 6881 | 0.1010 | 0.0614 0.2928

6-2-1 0.0196 0.0196 0.1638

6-4-1 0.0140 0.0208 0.1411

22 | 6-8-10-1 0.0849 0.0533 0.29590

6-6-1 0.0082 0.0210 0.1351

23 | 6-10-8-1 0.0712 0.0540 0.4015

6-8-1 | 0.0055 | 0.0197 0.1626

6-10-1 0.0058 0.0217 0.1612

6-12-1 0.0031 0.0169 0.1619

6-14-1 0.0026 0.0189 0.1221

6-16-1 0.0028 0.0143 0.1680

6-18-1" | 0.0018 0.0152 0.1194

6-20-1 0.0018 0.0137 0.1723

- 6-2-2-1 0.0175 0.0276 0.1216

6-4-4-1 0.0106 0.0243 0.1286

6-4-2-1 0.0101 0.0237 0.1397

6-2-4-1 0.0186 0.0302 0.1596

§-5-5-1 0.0080 0.0243 0.1824

6-4-6-1 0.0128 0.0239 0.1405

6-6-4-1 0.0071 0.0243 0.1484

6-6-6-1 0.0063 0.0216 0.1781

i N
bed =t Recl = e e ol e 3o 1o RY3 00 BRRTCN (VN PN VY Y 500

6-6-8-1 0.0048 0.0175 | 0.1455

20 | ¢-8-6-1 | 0.0035 0.0172 0.1317
21 | 6-8-8-1 | 0.0029 0.0164 0.1655
22 | 6-10-8-1 | 0.0025 0.0190 0.1522
23 | 6-8-10-1 | 0.0029 0.0187 0.1753
24 | 6-10-10-1 ] 0.0021 0.0157 0.1495
25 | 6-12-10-1 1 0.0017 0.0141 0.1698
26 | 6-10-12-1] 0.0024 0.0187 0.1979

27 | 6-12-12-1 | 0.0026 0.0185 0.1230

* The best network structure

24 { 6-10-10-1 0.0811 0.0515 0.3850
25 | 6-12-10-1 0.0857 0.0567 0.5438
26 | 6-10-12-1 0.0935 0.0545 0.2822
27 | 6-12-12-1 0.0821 0.0624 0.4401
* The best network structure
24 e
O Teining Daots Set
I3 Validation Data Sat
9 4 TestDataSet .o
et Ot Relotion
& - o
E-‘-: 1.6~
= 4 "
&
5 1.2 ~
v - a
) n
£ 08-
>
Z. 4
0.4 ~
0 ¥ I 1 I ¥ l L]

LI R
0 0.4 08 1.2 1.6 2 24
Desired Cutput (mn.)
Fig. 6 Relationship between actual (desired) and
predicted (output) values of the best obtained
network for predicting delamination size at drill
entrance.
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Fig. 7 Relationship between actual (desired) and
predicted (output) values of the best obtained
network for predicting delamination at drill exit

Table § Correlation coefficients for training,
validation and test data sets

Correlation coefficients
Training | Validation | Test Data
Best Networks Data Set : Data Set Set
Thrust force
(4-4-6-1) 0.995 0.992 0.992
Torque 0.97 0.96 0.92

(4-2-2-1) : ' :

Drill Entry (6- | 4 g9 0.92 0.78
18-1)
Drill Exit
(6-6-6.1) 0.94 0.98 0.87
4. CONCLUSIONS

In this work the artificial neural networks technigue,
with back-propagation training routine, was used for
the prediction of delamination size, resulting from
drilling GFRE specimens, at drill entrance and exit
sides. Secondary ANNs were developed o predict
the generated thrust force and torque instead of
measuring them every time a delamination prediction
process was performed. Several attempts were made
to obtain the best structure of these networks. The
results obtained lead to the following conclusions;

¢ The best obtained network structure for predicting
thrust force was 4-4-6-1. With a mean-squared
error of 685.92 N? for the test data set.

e The best obtained network structure for predicting
torque was 4-2-2-1. With a mean-squared error of
0.0094 (N.m) for the test dara set.

@ The best obtained network structure for predicting
delamination size at drill entry side was 6-18-1.
With a mean-squared error of 0.3194 mm” for the
test data set.

o The best obtained network structure for predicting
delamination size at drill exit side was 6 6-6-1.
With a mean-squared error of 0.2557 mm” for the
test data set.

® As the correlation coefficients for each of training,
validation and test data sets for the developed
networks approach to 1, the best obtained ANNs
can be effectively used to model and predict thrust
force, torque as well as delamination size at both
drill entrance and exit sides.
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