

Question 4: (14-marks)

(a) For the array of two infinitesimal horizontal dipoles positioned along the z-axis, as seen in Fig.2, assuming phase difference β between the two elements, derive the normalized array factor.

Note that: The radiated field from a single element positioned at the center is

¥.

Fig. 2 Two infinitesimal dipoles

(b) For the array given above (problem 4(a)) if the total normalized radiated electric field is given by;

$$E_{tn} = \cos\theta \cos\left[\frac{1}{2}(kd\cos\theta + \beta)\right]$$

find the nulls of the total field when $d = \lambda/2$ and a. $\beta = 0$ b. $\beta = +\pi/2$ c. $\beta = -\pi/2$.

Vestion 5: True or False: (10-marks) (Model D) الاحظ أن: ترتيب الأسئلة مختلف في كل نموذج

- 1. Inductive or capacitive loading for short dipoles (or monopoles) improve the current distribution.
- 2. In many applications it is necessary to design antennas with very directive characteristics. This can only be accomplished by decreasing the electrical size of the antenna.
- 3. The maximum magnitude for the major lobe of N-element uniform linear array is equal to N.
- 4. In uniform linear array, the range corresponding to the visible region is $-(2\pi d/\lambda) \le kd \cos\theta \le$ $+2\pi d\lambda$.
- 5. The function $[\sin(N\psi/2)/\sin(\psi/2)]$ behaves typically like the well-known function $[\sin\psi/\psi]$.
- 6. In Yagi-Uda array the distance between the director elements is 0.15λ.
- 7. Long-wire antennas can be operated as traveling wave antennas by terminating the far end with a matched load.
- 8. Traveling wave antennas are characterizes by narrow frequency band of operation.
- 9. Log-periodic antennas are truly broadband devices and can be built to operate over essentially any frequency band desired.
- 10. For quarter-wave antennas mounted above the earth the poor conductivity of the soil results in excessive radiation power gain due to the induced currents in the soil.

Note that: $\mu_0 = 4\pi \times 10^{-7}$ H/m

X.

2000 C C Comor (61.7)

مر دی

University : Menoufia

Faculty : Electronic Engineering

Program : Communications
Academic level : Fourth year

Course Name : Antenna Engineering

Course Code : ECE 411

First Semester

ate : 26/12/2019

Time : From:10 AM to 1 PM

No. of pages : 2 Full Mark : 90

Exam : Final Exam

Examiner: Dr. Abdelmageed Sharshar

Answer the following questions:

Question 1: (25-marks)

(a) For a half-wavelength dipole antenna located along z-axis, start with;

$$\overline{E}(r) = \frac{jk_oZ_o}{4\pi r}e^{-jk_or}\int_{\ell} \left[(\bar{a}_r\cdot\bar{a})\bar{a}_r - \bar{a}\right]I(\ell')e^{jk_o\bar{a}_r\cdot\bar{r}'}d\ell'$$

to derive the far field electric and magnetic field components, and then;

- (i) Deduce the radiation power density, radiation power intensity and beamwidth.
- (ii) Given that the total radiated power $P_{rad} = 36.565 I_o^2$ watt, find out the directivity, and the maximum gain.
- (iii) Find out the radiation resistance.

(20-marks)

(b) A small coil of radius $r_0 = 10$ cm and with N = 100 turns is used as a receiving antenna. This antenna is located 5 km away from a half-wave dipole and oriented for maximum magnetic flux penetration, as shown in Fig. 1. Find the induced open-circuit voltage $-j\omega B_{\emptyset}N(\pi r_o^2)$ in the loop when the input power to the half-wave dipole antenna is 150 W. The frequency of operation is 3 MHz. (5-marks)

Question 2:

- (a) Derive the input impedance for a two-element folded dipole of length l, and then show that the input impedance of a two-element folded dipole of $l = \lambda/2$ is four times greater than that of an isolated element of the same length. (10-marks)
- (b) With aid of sketch, explain the construction, and function of T.L-TV balun which is used to connect a 75 Ω coaxial cable to a folded dipole of 300 Ω . Show how to increase the bandwidth. (10-marks)

Question 3: (21-marks)

- (a) Compare between the Broadside and End-fire array to show the difference between them in
 - (i) the direction of maximum lobe.
- (ii) The current phase progression.
- (iii) the distance between elements to get only one major lobe in the visible space.
- (64 marks)
- (b) Derive the array factor for two-element **parasitic** array using two port network analysis. Discuss the required conditions to work as an End-fire array with one maximum in one direction and minimum or null in the backward direction. Generally for parasitic arrays, how much the resultant bandwidth, gain and radiation resistance? (10-marks)
- (c) Demonstrate the effect of ground for horizontal long wire antennas.

(5-Marks)

L

