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TIME AND MEMORY STORAGE SAVING IN THE ANALYSIS OF SYMMETRIC
PLANAR MICROWAVE CIRCUITS
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ABSTRACT- Conventiona) moment method with subsectional bases and Dirac testing funcuions
reduces the analysis of symmetric planar microwave circuits ta solving a system of linear
equalions with block circulant coefficient martrix, A method is presented for diagcnalizing
this matrix using disccete Fourier transforms (DFT7). It is shown that much economy n
memory space and computation time can be achieved by making use of the properties af
block circulants and by implementing the DFT's using fast Faurier transform (FFT) techniques.

I. INTRODUCTION

Planar circuils considered in this work are microwave junctions having dimensions
camparable to the wavelength in two directions but much less ihickness in the perpendicular
direction. The commonly used technique for analyzing these circuits 15 based on a contour
integral representation of the Helmholtz wave equation which is reduced to a matrix equation
by the conventional method of moments; usually using pulse functions as subsectional basis
functions and Dirac delta functions as testing functions [1-3).

A drawback of this methed is that it involves the inversion of large order matrices
10 get the matrix-impedance description af the junctien, The situation is worse when the
method 15 used for the anaiysis of planar resonators, for even with an eflicient root finding
algorithm like, (or instance, the Muller algorithm, a big detarmwnant has to be evaluated
repeatedly in order to determine the resonant Irequency. Matrix inversion and determinant
evaluation are time and memory-space consuming operations, especlally with limited computer
resources.

This paper presents 3 proposal 1o reduce the memory-space and computation time
in the analysis ol planar circuits with rotational symmertry, where an appropriate discretiz-
aton of the contour integral is shown to result in a system of linear equations with a block-
crculant coelficient matrix. This is a matrix in which 2 basic row of btlocks is repes
again and agzin but with a shift in position. In practical computations, theref{ore, only
basic row need to be computed and stored in the computer memory. Besides, the bu
periodicity means that block circulants tie in with Fourier analysis and in the present
we show how block circulant equations can be solved using FFT techniques which p -
considerable saving of computation time. '

In a recent work, a technique is suggested to use FFT to speed analysis of sy /
cal planar junctions with circular boundaries characrerized by a system of linear ¢ -
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witn circutant ceefficient matrit [9]. The present work considers m-fold symmetric junctions
and is, therefore, a generalization f{rom which the specizl case treated in [3] is readily
deduced.

IL THE CONTOUR INTEGRAL METHOD

Congider an m-fold symmercic planar junction made up of a center conductor sandwi-
ched by two subslraves. For the sake of generality, the substrates are assumed to be ol
ferrite material with a magneric [licld acting perpendicular to the ground conductors as
shawn in Fig. la. When the thic<ness d is much smaller than the wavelength and the ferrite
spacers are homogeneous and linear, only the lield components Ez’ Hx’ and Hy do exist

and are independent ol z. It is deduced {rom Maxwell's equations tha: the RF-voltage V=dE,
satisfies the Heimholrz egquation

(Yﬁ qkz)V =) o (LG

where

<= (Wi (n, €)'

€1 - relative dielectric constant of the [errite
He = eflective permeability ol the ferrite

2 2
W -k )
M,k = dragonal and of{-diagonal elements of the permeability rensor.

At a caupling porrt, the following baundary condition should be satis{ied

)¢ (3‘/

- Ay .
i v 2ﬁ_ v S Y= sjap dJ“ ... (2)
where 1 is the surface current density normai to the boundary and ét and én are, respec-
tively, E\ne decivauve tangential and normal to the boundary. At sarts of the boundary
where there are na coupling peris we may assume, neglecting fringing fields, a perfeer
magnetic wall, 1e. = J.

Following Mhiyoshi et al. [2,4] and using Weber's solution for the cylinerical Green's
functions, equation (1) with the boundary condition (2) is reduced to the contour integral
equation

(2)
1

VR ](c[-;o_)pe dHf)z)(kr‘iLq+k(cos G-i%smO)H

(ke} ¥ ) dt
q )

el (3)
where p and g are potats an the baundary ¢ ol the junction and the syrnbolf denates Cauchy's
principal value. The variables r and 6 are as indicated in Fig. L.

The (ntegral equaton (i) has been solvec by ([trst disceetizing the contour into
N-uniform elements. The conventional method of moments is then applied with N-pulse
funcuions delined at N-sampling points at the centres of the elements as testing functions.
ln this way the integral equation is redyced to the mateix equation

U v = H I <)
where V and [ are column vectors made up, respectively, of the voltages and cuecent densities
at the samplhing points. The elements of matrices U and H are [5]
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Due ta the m-fald syrrmetry of the junction, the values af the variables r and G are fepeatec
every n = N/m sampling points so that

and @u:@ ...(7)

rlj * N kl
provided
k= (irpad and 1={pr]! NP £}

Wrerc p is an integer and the brackets denote residue module N. Since the matrix elements
u and h are funcrions of r and O only {ecuanons 5 and 6%, these elements are pefiodic in
the same manner as the independent variasles so that the matrix U, ior instance, has the
{rom

Y11 Y2 ot P “Inet Yirez o Uizn == YiNemil t 0t Ui
u u T u
21 N n P2 N 2 “on Tt YINnel  CCt YIN
. 'Ul"' UZ Um
Uny Y2 0 Yan Ynn+i T Ynza " dnN-nel T YN
U=
Urn Ul e l'Jr'n-l
U2 \.-3 . Ul ]
B L@
The matrix UJ s made up of 2 row of blucks (UI’UZ‘ .,Um) which repeats jttell

but with a :hift to the cight. Such a matrix is called "block coiculanmt matrix. Hereafter
we shall use the notation

J = beirc (Ul. UZ’ vy Um ) R ¥ 1))

to denote block cuculants. Accordirgly, equation (L) 1s rewritten as

bcirc(Ui‘ Uz, P 'Jm)v:bcm' (H),Hz,. LB oY

m

From this last equation :he impedance matr.x of the ecuwvalent N port is given by (2.3¢

-1

Z=U" H L. (12)
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where U'] denotes the inverse of the matrix U. When the circuit has l_)ut only m porTa.
then Z can ceadily be reduced to the correspanding m x m lerminﬁxl impedance matrix
based on knowledge of cither the clectric or Lhe magnetic ficld disftnbt_.mon on the ports.
One usually adopted approximation is to assume that the magnetic ficld distribution s
uniforrn and identical with the Jowes! order TEM stripline mode. The impedance matrix
entries are then abtained [rom the elements of the Z matrix on the basis of an average
electric field across the striptines (1-3).

When the junction has no coupling ports, then
det U =0 o Ul

gives the proper frequency for which equation (11} has a non-trivial solution, that is the
resonant frequency of the planar structure.

Tl. Solution Of The Block-Circulant Matrix Equation

As readily seen from the previous section, the majority of the computaiional effort
with the contour integral method is devoted to computing the enitries of the matrices U
and H and to invgrting the matrix U or solving equation (11). The black circulapt structure
of U and H for an m-fold symmetric junction reduces the number of matrix entries to be
computed and stored by a [lacror of 1/m. Further saving in compuration tme would be
reatized if the number ol basic operarions required o solve the block circulant equaiion
could be reduced. Indeed, this is possible by malung use of the intimate connection of block-
circulants with Fourier transforms. Thus, it is shown in the appendix how a block circulant
is diagonalized using discrete Fourter transforms so that equauon (11) may be transformed
into.

(FLOF) diag (A, ..., AD(F_0O FYv=C Lo (16)

where C stands for the right side of the original equation, F__ and F are Fourier matrices
of order m and n, respectively, and (Qdenoles tensor or Kroncker products. The square blocks

A(. sy A are derived from the corresponding blocks of the U marrix as foliows. Compute
Bj:FnUing(Fn(FnUi)') =l .. m N 1S4
then
(A A )= m (Fr @1 )@B B )T (16)
L A n n p o B NN
Next, the following substitutions are made
X = (F O F)V Lo um
Y = (FmO Fn)C c.. (UB)
Equation {l4) then becomes
diag(Al,.-‘.Am)X=Y <. (19)
or
Al‘\i:yi iz=f ..., m ... (20)

where X] and Yi are veclors obtained by partoning X and Y, respectively, inlo m subvectors
\
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each of n elemerits. The potentuial V is obtained by sclving the m systems for X and inverting
the transformation in equation (17).

In this way the original marrix equation (! 1) of order mn degenerates into m seperate
systems each of order n. The whole pracess can be programmed using only two squarc arrays
of dimeasion nxn. One ol thesc arrays s used as working space for camputing the U blocks
and the other for storing the current A bleck. On the other hand, a direct solution of equation
(11} would requice at least mn x ma memary spaces. Peside this save in memory space,
the present technique provides a significani reduction ia computation time. Thus, it is shown
in Table ! rhat the number of multiply-add operatiens requited to implement the proposed

methad 14 of the order of rr|n3. compared with A operations for solving the original
equarion (11) by conventional Gaussian elimipation ot Crout-LP facrorizaten. It is assumed
that the DFT's involved are carried oul using fast transform algorithms instead ol convertional
matrix multiplication. This reduces the number of multiply-add operations required 1o trans-

form a sequence of length n from n 1o n log. (n) {6).

By the way of illustration, we applicd the present method to the analysis of the
planar Y-junction circulator shown in Fig. ib. The resuits plotted in Fig. 2 have been obtained
with a tetal of 48 nodes and are in good agreement wi:h the corresponding results of relerence
[4] The computed elements of the scattering matrix of the jincion are tound to sausfy the
unitary condition toc within | percent, wiuch indicates the accuracy of computations. The
computation time tc solve the problem, i.e. 16 determine the scattering anc losy parameters
ac a specilic frequency, is less than 2 minutes on an NCR-TOWER minicomputer. Perlorming
the same corapurat ans, but wusing Caussian elimination algorithm to solve the system of
hnear equalions, 15

Table I: Steps and approximate number of multiply-add operations for solving the block-
circulant equation (1)

Step Nores Approximate number of
multiply-add operations

Form m B blocks 2 mn FFT Ime? log n
equation (15)
Form m A blocks nm FET ol sequences nm? log (m)
equation (1&) of length m
Transform the right-side FFT of m sequences mn 'og {n) » nr log (M)
Y:(F, ® F)C of length n followed

by n FFT's of sequ-
ences of length m

Solve the svstems solution by Crour-LP mr-.3

A X = Yi {actarization

i= l, seaas y M

Translorm X to obtain V 2 mn FFT 2 mn? log (n)

Ve(F_ 0 F)ex 3,

Total : 0 (mn

found to take 6.2 minutes an the same machine. This mndicates the save in computation
limme provided by thc present technique. Howewver, this save is loss Lhan would be expected
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from Tahle |, which compares only the numbers of arithmetic operations necessary tc solve
the system of linear equations. The overall computation time includes alsa the time consumed
in f{orming the matrix elements and other computations.

Iv. CONCLUDING REMARKS

Mament-method analysis of symmetric microwave planar junctions is shown to result
in matrix equations with block e¢irculant structure. These matrices are intimately related
to Fourier analysis: the eigen-vectors of the basic circulant are the columns of the discrete
Fouricr transform matrix.

A sinvdaniy transiornmation (ar diagonalizing block circulants has been presented
and 1ts implementation using FFT techniques has been demonstrated. When incorporated
with the momentmethoa , the proposed transform provides great economy in computation
time which adds to the memory-space saving distinguishing block circuiants. This wume saving
would be paclicularly useful when tne salutian is tterated in order, for instance, 1o determine
lhe resonant [requency of a planar resonator or the optimum circuit pattern of a symmerric
planar structure [7].

The present technique for the manipulation of block circuiants s readily appl.cable
in cother electromagnetic field problems involving m-fold symmetric steuctuees analvsed by
moment methods.

APPENDIX: Diagonalization of Circulants and block - Circulants

o (his eppendix we develop similarity transformations for diagonalizing circutant
and Slock-circulant matrices we begin by intracucing some basic definitions.

Dictinttion N1 : I A and B are, respectively, mxn and pxq maitrices, the Kroncker or tensor
product of A and B 15 the mp x ng matrix,

|
3 B 2 ® I B

AXI): vy Poe v ey « (A”
a 1 a; I}) e . :lmnb

Delinition D2: The basic circulant P, is the square marrix ol order n defined by

o 1 0 ... 0
P =circ(0,1,0...,0) - e 0 1 ... o | (A2

I o 0 ... O

It 1s readily seen that P 1s a permuration matfix in the sense that post-muiuplication
of an arbatrary matrix A by P amounts 1o a right-shift of the columns of A while pte-mult pli~
calion of A by P amounts to an upward shi{t of rhe rows of A. It follows that

PZ:K'X P -crc(0,3,(,0,..., 0

P2 s circ (0,2, 0y Ly« v sy 0)

(A3)
p" scirc (1,0,0, ... 0 =1

n
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where | is the idenut, (unit) matrix of v.o.. a. P05 last result expresses the fact that
repeateél multiplication of A by P n limes maps A into itself.

Delinition D3 : By the Fourier matrix of order n 18 meant the matrix F = FI_| where

| | 1 P |
! w wz PP wn-l
Fr = L 1 w?t w“' N w2n'2 (Ak)
/ 0
. wr\-l w2(n—‘l? w (n-1){n-1)
the star means conjugale-transpose
and {, w,. .., W are the a primitive roots of umty. Since w' = 1, w2 W'  and Fr can be
written alternatively as
| | | l
2 1-}
[ w W w
i .
l'l‘] = —J: J \v2 WL w! 2 {AS)
Jn
| n-i n-2
W w W
Baoth F and F* are symmaetcric and it can be easily cstabhished thar
FFesl or Flozpro=c (A6)

where the bar denotes complex comjugale. From the delinition of F it f{oliows thatr I

Z= (Zl’ 22. N Zn)T IS a sequence of complex numbers, then Z = FZ is the usual discrete
Fouricr transform of Z.

The {following theorem esiablishes the relation betwzen the basic circulant and
other c.rculants or block-circulants.

Theorem TI Let A >¢ block-circulant
A = bcirc (Ai, AZ' ey /‘\m)

where the A"‘s are square matrices of order n. Then

m-1 I
A= L Pa@ A (A7)
k=zq

Prool From definitions DU and D2 and equations A3,
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a, o
0 - - .
P A=l @A < 0 Ay 0
1} 0 4] A‘
l _ - -
Pm@ AZ - 0 AZ 0 ¢
0 Az
_A2 G Qo 0
PL 0A, = 0 G o )
m 3 k!
0 o 0
| 0 Ay 0 cee 0]

ete.
The theorem follows Dy summing up the abose eguations. In the special case-when the A

s
are orcinary scalers, A is 2 circulant and the thearem reduces to k

Circ (3 ap -<wa b L a P (A8)

Next we prove 1he lollowing theorem concerning the diagonelization ol the basic
circulant .

Theorem T2 Pn = Fr.\ Wn Fn (A9)-

where W_ is the diagonal matrix of order n defined by

2 -1
\Vn = diag (Lw,w, ... ,wn ) (A 10}

Proof The ineorem can be proved by cvaluaung the matrix product F*WF [ollow:ng the
rules of conventional matrix multiplication. Another approach, which will make clear tne
relation between the basic circulant P and the Fourier matrix F, 1s to consider the eigenvalae
probiem associated with £, namely

P p A s, (ALl
Muitiplying both sides by P (n-1} umes and using (A3}), it is readiy seen thart
Pnp=lp:/{np or/]n=l |
The soiution of this last eguavcn 1§ .A_: Lw, .. W in other words, the eigenvalues
of P are the diagorat elements of W so thar

0 ./h =W (A.2)
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The elgenvectors are oblained by solving the cigenvalue equation (A1l), [t is easily seen
that

2 -
P, = (LA AT AT (A13)
where the first component has been arbitrarily set equal to unity as then_eligenvalues are
always determined up to 2 constant multiplier. Subsvituting . = Lw, . .. w , respeclively,
we see that the eigenvectars of P are the columns af the Fourier matrix F*, ar

(e, P, ... P 1 =F* (A 4)

Combining the eigenvalue equations (All) for all eigenvalues and corressondmy
eigenvectors of the matrix Pin 3 single matrix equation, we get

PLP Py...P 1=lpP Py ..P ] [A 0 ... 0
0 A, 0
: n
or, using (A12) and (A[4)
PiFe = Fx o\ (A15)

Premultiplying by F and using (A6! we see that Lhe basic circulant P s diageonzlized by
the [ollowing similarity translormation

F'] [ O (A16)

and the theorem follows. We now make use of this ticorem and the relation between the
basic circulant and block circulant inatrices establisheo 1n theorem Tl 1o develop a simiarity
translormation for diagonalizing thesc latier matnees. The resvlt is stared i 1the lollewing
theoren.

Theorem T3 [ A s an arbitrary block circulant made up of m basic blocks of order n,
then there are m square matrices MI’ . .\lm of order n such that

A

beirc (A, ..., A_)
m

<Fman)“ diag (M}, .0+, M )(F_ OF) (A17)

Prool From theorem Tl we have

n-|

L3
A= b PLOA Y - (A18)
K70
But from theorem T2 and identitics (A86), it follows that /
e B ! k - . . .v
PLO N = T Wi ) @F (B A, Fad Fl (A1S)

*
Letung B, = Fn Ay, Fp and using the 1ensor product identityUX @ VY = (U@ V) (X @), the

line above becomcs
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* L] k
F _OF) (W@ Bk) (Fmo Fn)

Theeafare, m={
A=(F_of) ¢ L v )(F_OF) (A20)
" 'm o n k m n '
k=0
Now, by an explicit compuration, it is seen from the defindion of W that

m- | I

o W B, = diag (M, My ... M) (A20)

k=0
where

T i .* T
MM, oo MDY e CE @) BB ) (A22)
»

T - 1 B
Thus A=(F_QF) didg (.\11, Mg v M) (FmOFn} (A23)
and the theorem is proved.

H n = ., the block circulant degsnerates into an ordinary circulant, and from (A23)
we see that a circulant of order m may be repcesented as

A = Cire (al, Boy - ey am) =F M,

I N

M=m’? diag (F CHEPR am!T ) (A24)
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