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BOUNDARY ELEMENT ANALYSIS OF TRANSMISSION LINES
FOR TRANSVERSE ELECTROMAGNETIC WAVES

Dr. Hamdi A. El-Mikati*

Abstract- The boundary element method Is used to compute the characteristic
impedance and capacitance matrix of various types of transmission lines supporting
transverse electromagnetic waves. Multiconductor lines between infinite ground
planes are treated by combining the numerical solution with appropriate analytical
representation of the potential in the conductor-free region. Comparison is made
with available published results.

I INTRODUCTION

Various types of transmission lines supporting transverse electromagnetic
(TEM) waves have been developed and are widely used in high frequency communica-
tion systems. However, only few types with simple or highly symmetric structure
do have exact formulae expressing the electric characteristics of the line in terms
ot its geomertrical parameters. Considerable effort has therefore been spent on
approximate and numerical techniques including, for example, approximate conformal
mapping methods []-6), variational methods [7), Fourier transform methods [8],
finite differences [9], numerical methods based on Green's function integral equation
approach [10-15], ...etc. A considerable body of literature has accumulated in the
iaa;.jiew decades and a literature review may be found, for instance, in references
1-15).

Recently, the boundary element method (BEM) has been introduced and
efficiently applied to many potential problems involving Laplace's equation Ll6).
Beside its ability as a numerical method to deal with quite arbitrary geometric
structures, it 15 often more memory-economic as compared with its rival finite
differences and finite elements methods. This advantage is due to the fact that
the BEM coniines tne analysis of a homogeneous domain to the boundaries oi the
domain, and so the problem is in effect treated with one less dimension. Another
advantage of the BEM is that, unlike other techniques based on integral equation
formulation, the BEM does not require a knowledge of the Green's function of
the particular problem under consideration; the BEM formulation involves only
the free space (unbounded) Green's function, which for Laplace's equation is the
well known logarithmic potential,

The present work has, therefore, been set to make use of the BEM as a basls
for computer code {s) suitable for use on a relatively small computer system and
applicable 10 a wide class of TEM-tranmission lines. These include

I. Multiconductor lines in free space or inside 3 tubular conducting shield (boxed
lines). The familiar parallel-wires and coaxial lines are typical examples of
this class.

2. Strip lines consisiing of one or more strips arbitrarily located between two
parallel ground planes.

3. Shielded microstrip lines (either boxed-line or a microstrip over a substrate
of finite width between two infinite ground plancs),

In all cases, the conductors are assumed to extend infinitely, parallel 1o the z-

axis, but their cross-sections in the xy-plane can be of guite arbitrary shape.
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1l PARAMETERS OF MULTICONDUCTOR TEM-TRANSMISSION LINES

This work is concerned with the computation of the distributed parameters
[capacitance and inductance per unit length) as well as the characteristic admittance
and coupling coelficients for TEM-transmission lines. For the sake of generality,
we shall assume a multiconductar line. It is well known that the essential parameters
of such a line are the elements of the Maxwellian capacitance martrix C, from
which the characteristic admittances for the various cperating TEM modes and
the coupling coefficients can be easily cbrained [11-15) The capacitance matrix
is defined as follows. Consider a system of n-conductors (plus ground} with potentials
Vie Y2, «s Vo and let Qp, Q2, ..y Qn be the corresponding totral charges per unit
length on the conductors. The potentials and charges are then related by
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Reciprocity and conservation of charge impiy the following known properties of
the elements of the C-matrix [14,15)
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The equality sign in the last equation holds for a 'closed system’, where the summation
runs over the grounded conductor. This Is the case, lor instance, of a boxed line.

Similarly one can define the inductance matrix L which relates the [luxes
and currents in the various conductgrs. It can be shown that, for a system of n
conductors in @ homogeneous medium

LC = ME 1 “eh ( 3)
where | is the unit matrix of order n and u and €are the permeadility and permitivity

ol the medium, respectively.

The characteristic admittances are alse readily obtained from C [11) 1f but
a single conductor is involved (n = 1), the admitiance is given by

? = ¥ c ... { 4 !
where v Is the phase velocity ol TEM-waves in the surrounding medium. In the
case of a microstrip over a dielectric substrate

Y-"Cd!co‘l'a el 3)

where Cg4 s the capacitance per unit length of the aciual microstrip structure
and Cu and Y, are the capacitance and characteristic admittance of the structure
with air as dimiectric.
When two conductors are involved (n = 2), there are two basic modes of operation:
an odd mode (V| = I, V2 = -1), and an even one (V| = V3 = |) From (1), the corre-
sponding total charges are

Qmsc'l“ Clz 1= l',z

lescll +C¥z -0-‘6)
The line admittances for these modes are, thereiore,
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For n > 2, the various line admittances lor & particubar mode of operation may
be obtamed n & similar way.

Il BOUNDARY ELEMENT ANALYSIS

Following Callin [17], the slemeniz of the capacitance matris lor & muiticon
ductor line are cdtmined sa [olbows. Lev u (i, y) be the potential function satsdying
the following boundary valee problem

v’ W =0 ouide the conducror

ani uJ =1 e This conduciafr |
=1 on &l ather conduetoo P W
It then follows from (1} and Causs‘s theorem that
::”.t:-l.-;,l'hqla: Wl=0l2 . ., T

whaee the Integration is carried out along the bowndary Bi of the @ 1h condurtor
and g is the outward normal derivative of U .

The determination of the capscitance manris, thereiore, reguires linding n r«nul
tunctions of the type given by eguation (B). This repeated solution ol AT
potentlal problem  [of ferent boundary conditions o conslderably simplified n
the boundary slement method, which reduces the boundary value protlem (0 one
ol solving & system af linear eguations with ihe wouror term being the kitwm viluss
of the potential and jts noemal derivilive a1 the boundary nodes. [l the syntem
marrix: is decomposed, for imitance, oHng & Gamsisn slimination fechnigue and
stored In trisngular form then, getring & new solumion for 4 new iet of beundary
valies amsunta.only o & simpls BACk-SubaTiTuTion praoeid.,

mammmmmmFﬂHHMHlanMMul Ehus
welghted residual method  or Green's |dentitvy, the differental equation (B can

w - pftw o= o oo i)

where g 13 the Ires-ipice lunbounded) Green's fusction and b i the corresponding
normal derivative. [t is well known thar g = UZsin (Lirk The subscript p in equation
) means an arbirary poinl insds & region R whers u salislics
Laplace's equation &nd B i3 the boundary ol region. In the special cose when

p lizs on B, equation {1} reduces 1o

o = Jhﬁ': n)(“t lii“”
mfmmmcmmpmwmuhhuwﬂ.cu.fh..-nuu:
the inner domain angle at p. -

Eguationa (10) and {11) are the basic equations in the BEM analysis; The [irse
of them i3 uwed to compute the fields &t any intermal point once the potentlal
and its derivalive are kmown on the boundary, These boundary values are

nofenal
in irn abtained by solving the boundary integral equation (11} To this end, the
isretided i the ylual poparametric linite element manner into,
N-ciements and the unknown functions u and g are approximated by suitable
ﬁmmmm In the present work we conline Qurselves fo linear
polymomials. Accordingly, equation (117 15 reduced to the disceere form

:']ﬁtlll“Ill IE“ qi b=y dya i R 41 |
whre hli and B, are made up of Integrals over the two elements ihrough node

J
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i of appropriate products of Green's functions and the interpolation polynomials.
Detailed expressions for the various quantities and method of computation are
given, for instance, in refernce [16). In matrix form equation (12) becomes

Hu-=Gg 54 A3

b X

where u = (U, Uy .+ . o uy) and g = (qg, Qo « .+ o qn)T. Matrices G and H depend
solely on the geometry of the region R, while vectors u and q comprise the values
of the potental and its normal derivative at the boundary nedes of R. Some of
these values are given from the boundary conditions or, in some cases , can be
deduced from the symmetry of the problem if any. The remaining boundary values
are obtained by solving the linear system (]3). Next we consider some numerical
examples with known analytical or numerical solution to compare with.

[V NUMERICAL EXAMPLES
1- 3oxed Lines and Open-wire Lines

The BEM equations in this case are set for the region outside the conductors
with the path of integration as shown in Fig. 1. In the case of a boxed-line, the
outermost boundary B, coinicides with the inner surface of the shield. However,
for a system of conductors in free-space, B, is taken to be a circle of infinitely
large radjus. Assuming that the potential is regular (zero) at infinity, the contribu-
non of B, to the line integral vanishes in the latter case and the path of integra-
tion is confined to the conducting boundaries.

Table 1-3 present the capacitance of a coaxial system utilizing conductors
of both circular and square cross-sections. The BEM results are compared with
those obtained by Lin using conformal mapping techniques [4}. In case | these
techniques give an exact result, while in cases 2 and 3 they give only upper and
fower limits for the characteristic impedance. The BEM wvalues lie within these
limits and sartisfactory agree with the exact values in most cases. Also the BEM
has been used to compute the characteristic impedance when one of the conductors
{or both} is rectangular with jts diagonals tilted at an arbitrary angle with respect
to the other conductor. Such results are useful, for example, when the structure
is used as a coaxial reflection standard [|0].

Table U gives the capacitance matrix and the odd-mode characteristic impedance
of a shielded two-wire line. The accuracy of the BEM results are rather satisfzctory
as may be seen by checking the properties of the capacitance coetficients (equation
(2) ) and by comparing the computed values of the characteristic impedance with
those calculated from the well-known analytical expression [18].

Table 5 gives the capacitance matrix of a two-coductor boxed strip line com-
puted using the finite difference method and the BEM. In the first case, a mesh
size of 100x20 is used and the corresponding system of linear equations is solved
using a successive over relaxation technique. With the BEM, however, a toral of
100 elements on inner and outer conductors have been found sufficient to give
results of comparable accuracy. Such a relatively small grid size can be easily
handled on a moderate computer system using, for Instance, a simple Gaussian
elimination aigorithm.

2- Multiconductor Lines Between Parallel Ground Planes

This type of transmission lines is an example of potential probjems where the
boundaries involved extend to infinity. In boundary elements, as well as in (inite
elements analyses, these infimte boundaries have been dealt with in various ways:
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simple truncation, use of infinite elements, or by combining numerical methods
with appropriate analytical omes. Simple truncation, by introducing end walls at
far enough distance, reduces the problem to one of the type considered in the previous
subsection but eventually increases the mesh size. Also, 't has been found that
the results depend on whether Dirichlet's ar Neumann's condition is imposed on
the artificial end wall [19). On the ether hand, the use of an element shape funcrion
extending to infinity and including an exponential decay does not invelve much
increase of the number of elements, but the choice of the rate of exponential
decay Is somewhat arbitrary and may affect the resuit [20].

The third approach, the one adopied here, consists in the following. As shown
in the ligures accompanying Tabies 5 and 6, the entire domain between the ground

s is divided into 1wo parts: an interior region | enclosing the conductors and
bounded by the rectangular contour B, and an outer region il extending 1o infinity.
Inside this latter homogeneous region the potential is represented by

u=EA expl-mnx| /L )sin(m y/L)
q=ZA m /L exp(-m= | x| /L )sin{m y/l} waa (£8)

In the interior domain, the BEM is applied with the variation of the functions along
the boundary elements assumed as linear. This means that

uly)=gu ¢ (y)
qly)=gq & ly) on AB a1

where ¢, is a trangular pulse lunction with a unit peak at nooe r and zeros at
nodes n+) and n-l, respectively. The BEM equations are then lormed in the usual
way. However, since neither the porential nor its normal derivative s specilled
along the interface AR berween regions | and [ the number of unknowns would
exceed the number of BEM eguations unless further enough relations between ihe
variables are provided. This s done by 'matching’ the solutions i the exterior
and interior domains along AB.

One method is to setl the porentials and the:r normal derivatives at the nodal
points (i.e. the set of up and gy vaiues in equations (15))equal to the carresponding
values obrained from equations (&), Although this process ensures the coincidence
of the exierior and interior solutions at the nodal points, the Two solutions may
vary considerably over the whole zlement unless the element lentgth s toco small,

means an excessively large number of nodes and an Increased Memory reguire-
ment. The difference, or mismarch, between the two solutions results in a dis-
continuity in porential across the element and is therefore physically equivalent
10 the introduction at the interface of a double layer which may result in an unaccep-
table ercor n potential and charge distributions. It is therelore necessary that,
for a given number of nodes, the difference between the interior anc exterior solutions
along the common interface be kept a minimum, for instance, in the least square
sense. This can be effected by minimizing the error function

F’ft“e-uil?-w(qt-qilzd: v (16)

where w is some weighting function and the integration is along the interface AB,
Substituting from equations (14) and (15) into (16) and equating the partial
derivatives with respect 1o the nodal values [u_] and [q ] 10 zers, we ger after
eliminating the expansion coefficients (A ] " i

L
{ql.qz.....q”}-E(u,.ur---;qn} T

where C & square matrix of order n.
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The linear relation (17) between the nodal values on the interface AB and the vani-
shing of the potential on the upper and lower ground planes provide a sufficient
set uf boundary conditions for solving the BEM equations in the interior region
1L

For the purpose of comparison, we have applied the above approach to compute
the vapacitance matrix for the structure shown with Table 5, but with the end
walls removed. The results arc given in the same table together with the values
obtamed by Kammler using a Green's function integral equation technique [!1).
The BEM gives slighgtly higher values, presumably because we have assigned a
very small (but non-zera) thickness to the strips. This has been found cemputionally
morc convenient as it allows the use of the routines developed for the boxed line
with slight modifications and avoids troubles caused by singularities at the ends
of un infitismally thin strip (ulthough in principle these singularities can be dealt
with i the manner discussed below),

lable 6 presents another example taken from reference [13] which uses aGreen's
fuction integral equation approach similar to the one developed earlier by Kammier
[11}. The same example has been solved in a recent work using a moment. method
[15). e BEM results are closer 1o the results of refrence [13] than 10 those of
the women® method in which ihe upper ground plane had 10 be truneated at z finite
width.

Cinally, we present in fiy. 2 an example of an infinitesmally thin microstrip
over o dielectric substrate ol [inite width; a practical case whose analysis has
receswved much less attention (han the infinite-width substrate [21]. The BEM
analvsis of this problem is carried out in the manner outlined above with the integra-
tion path taken as shown in IYig, 2, The singularity due to the sudden change in
boundary condition at the edge of the microstrip has been treated by refining the
mesh near this edge and by wsing a shape interpolation function proportional to
the ~juare root of the distance Irom the edge, so as to satisty the edge condition.
This treatment of singularities in NEM is discussed in derail in reference [22]. Examina-
tion of the results presented w Fig, Z shows that, unlike the narrow substrate,
the BEM results for the relatively wide substrate do not differ appreciably Irom
the vorresponding values for 4 microstrip over an infinite substrate reported in
earlicv work [3, 8]. The preseni method can thereciore be used for the analysis of
the wlinite-width case, provided the substrate is truncated at an appropriate width.

V CONCLUSION

Beside its simplicity and memory-economic character, the boundary element
methed is capable of treating a wide class of transverse eleCtromagnetic (ransmission
Jines with an accuracy comparable with other numerical and analytical techniques.
Problems of shielded strip and microstrip lines involving infinite boundaries can
be treated by combining BEM analysis with an appropriate expansion of the potential
in the conductor free region without resort to infinite elements, the accuracyof
which may depend on arbitrary hosen parameter. In principle, the present techniques
can be applied to problems involving multilayered dielectric media. Assessment
of the method in such applications and @ comparison with other technigues from
the l‘"“;d“f view of accuracy and memory requirements will be considered in a
future study.
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Fig. | Shielded and open-wire TEM transrmussion lines. The dashed
fine |s the BEM path of integration.
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Fig. 2 A micrastrip line problem. =99, b / b-1/6. Curves | and 2

are BEM valyes for d/D=0.2 and 0.8, respectively. The dots and the
dashed line are values for an intinite-width substrate {refrences [3,3D.
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alb 2z, { exact ) z, { BEM) C s # z ( BEM )

min max

0.638732 20.0 18.519 0.239083 99,31 90.372 0,401

0.547498 30.0 29.244 0.399780 69.199 $9.319 9.291

0.464000 40.0 39.853 0.445150 52,840 53.217 3.129

0.388874 50.0 50.709 0.557536 39.139 39.999 9.569

0.323103 60.0 61.971 0.676602 27.03) 28.912 7.970

0.232320 20.0 81.846 0. 15.878 19.563 7.552

0.168230 100.0 101.226 0.933520 05.232 11.981 7.650

0.121257 . 120.0 120864 =

- Table 2. Lower (Z_. ) and upper (Z___ ) limits (reference
. ; Tk min max
s, !: Pook Gntepe ) o SN vl (4and vary Fement ol of e charscteriic
conductere. N impedance (chms) of a _coaxlal line of square outer
] conductor and circular inner conductor. N = 60.

Number of boundary elements N = 60,

H. A. Elmikati

o
.
(i3}




2
2
b
8
U
a
~
g
2
£
2
a
:

4>

alr z . 2 Z {BEAD)
0.10 123,105 128.106 122.979
0.29 86.519 86.579 86.498
0.30 62.083 62.396 62.106
0.69 48,430 45.574 46,740
0.50 30.287 32.737 31.263
0.60 17.557 22.851 19.900
0.70 02.619 15.0764 06.010

Table 3. Lower and upper limits (reference [4]) and BEM
value of the characteristic impedance of a coaxial line
of circular outer conductar and square inner conductor. N = 60.

i

Z; (ohme)

Capacitance Matrix C / €,

R =40 2.0054 -0.7658 -1.2395
¢ =).0 -0.7658 2.0054 =1.2355 Exact value 271.u2
-1.2339 -1.2399 2.4799 BEM value 271.89

R=2.0 22992 -0.5906  -).7089
r = 1.0 -0.5904 2.2892 -1.7089 Exact value 260.38
=].7096 -=1.7096 35192 BEA value 2606.75

Table 4. Capacitance matrix
impedance Z_ of a shielded two-conductor line. N = 6C.

and odd mode characteristic
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Capacitance Coefficients C /[ ¢
S
1l €2 = €29
" Boxed- Finite Duff, B.1688  -).2ulé -3.2399 5.0721
Line BEM 3.1368 =3 1686 =3.1750 09410
Opan-_ lntq,ril Egn. 7.9029  -3.0640 =3.0650 4.8074

79636  -L1024 =3.0878 48565

Table 5. Eiements of the capacitance matrix of a two-conductor shielded

strip line computed by the BEM, finite differences,and integral equation
method of reference (11J. N = 100.

A A

=

| I

, : S

i h—l—j—l -+—ﬂ—-i| _l- |'.

. - —

(N e L e = ]

.___::-__.-_-.'_;-_- —L WS -'L--a.an:l.‘____.

8

Integral Egn.[ 1)) Moment Method [ 15 ] BEM
Cyi " 63.07 62,64 66.21
c I ! 'Djuﬁ“ -U‘.!JZ‘I -05-923
C 21 =03.866 -05.72% -05.523
CH 61.07 62.65 64.21

- — — - — —

Table 6. Elements of the capscitsace mafyix (x 10'¢ Fim) for a shielded
twe-conductor line, N = 100,




