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REDUCED ORDER MODELING PHILOSOPHY AND METHODOLOGY
BY
E.El-Konyalyi, A.Montesserll, I.Eldokany’* & H.Sorror>x

ABSTRACT:

This work is intended to introduce methods of reduct-
ion when the system model is given in state space form.
The methods are first introduced, their mathematical foun-
dation is explained in an easy way. Acritical discussion
and evaluation of the methods are then presented. A prac-
tical network problem is used in the study. Criteria for
order determination is then compared to choose the most
suitable one for analysis.

1- INTRODUCTION:

The design and control of dynamical systems usually
involves the computation of cdmpensating elements and
sensitivities due to unmodeled dynamics. This congtit-
utes a computationally expensive problem especially with
the increase in size and complexity of modern systems.
Reduced order modeling is the historical approach to all-
eviate the problem of complexity. ©Simplified equivalent
models have been commonly used for analytical gtudies of
linear models.

When the model of the original system is expressed
by a set of linear state equations, then the low order
models are obtained by approximating the eigenvalues of
the gystem. These models are based on the retention of
dominant eigenvalues Ref.(l, 2). The partitioning is
dependent on the designer's estimate of the frequency
range of the control function. Heduced order models so
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obtained, when excited by the original system input, will
usually ignores certain modes of the original system.
Erroneous models may be obtained in some even when the
original system is very simple and stable.

A ggregation principle Ref (3) is used to improve
the situation. This approach can be viewed as a slight
generalization of the dominant mode concept. Unfortuna-
tely, The aggregated model fail to preserve the struct-
ural integrity of the system. In other words, there
will be no direct physical interactions between the red-
uced states. To overcome this difficulty another appr-
oach of dynamic approximation, while preserving the str-
uctural idendity, is proposed Ref(4,5).

Liapunov functions are, also, used for constructing
a reduced order model. This method as first proposed Ref
(6) depends heavily on geometry, it is rather restricted
to lower order systems. An algebrization view is later
appeared in Ref (7), so the method becomes better siuted
for modeling higher order systems.

The purpose of the present work is to critically
review the previously introduced methods, analyse and
compare their characteristics. A numerical example is

uaed for discuasion.

2= System Description:

Congider a linear time invarient aystem represented

Ax + Bu

54«
i

(1)

Cx + Du

t
L}
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and the partitioned form,

X A3 Ba X By
= - + u (2)
%0, bk gad 1% B
y = Clxi + 02x2 + Du
where
X = states to be retained in reduced order modsel

x = states to be eliminated

A,B,C,D are gystem's parameters matrices of appropriate-
dimensions.

3= Dominant Modes Technigue :

In this approach, reduced order models can be const-
ructed in either way

1- Truncation

2~ Residualization

A truncated reduced order model ia obtained on the
premise that x, =z 0 . Thus the reduced order model 1is
described by

% ey B % By ou
(%)

[

y Cl Xy + D u

A resgidualized model attempts to retain the steady
gtate effect of the eliminated states by setting iz =0
and solving for X, = This gives

)
%o = = Ay (A %) + By w) G
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Subgtitution for X, in equation for X regults in

5 L] -1

X = (&g = A, Ay Ay) x + (By - Ay Ayp Bylu
il 1 (5)

yp = (0 = Cp Ay Ay ) ; + (D -0y A5 By Ju

The partitioning can be intuitively made basged on
physical reasoning , Otherwise the computation of system
eigenvalues have to be calculated and aranged such that

,dl, < ’d2]< cene ,dn, . Then the retained eigen-
values are chosen on the basis of the freguency range of

the control function.

The truncated model suffers from inaccuracles due to
the neglect of some of system modes. The resifualized
model is thus used to improve the steady atate response.
This can be explained as follows:

A model decomposition is used to bring the system of
equation (1) into the form

[ [ a [

Dy 4 By
= + ¥} (6)
L D ‘5(2 ’1’12

1

%

>

2 |

*

then, the states 22 can be approximated as in Ref (8);
A Lim !
xz(s) = (8I - D2 ) B2 U(s) (7)
S — 0

and %2 can be approximately given by

FY -l A
x,(t) = - D, * B, u(t) (8)
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under assumption of non-dominancy of eigenvalues D2 4
the D-C +transmission between ig(t) and u(t) is affec-
ting the reduced model.

4~Lower Order Aggregated Models:

Because lower order modeling based on dominant mode
concept cannot be a satisfactory model in all cases, the
developement of an aggregated model becomes apparent.

Consider the system,

z a Fg + Gu (9)

where F 1s a lower order coefficlent matrix for system
of equation (1). In order for (9) to be an aggregated
model for (1), we reguire that

z = Qx (10)

for all t. Thia condition is called "dynamic exactness"
and is achleved if

FQ = QA
and 11
G = QB

This means that =z 18 a linear combination of
certain of the modes of x. This is quite a restric-
tion for the choice of the ce¢lass of matrices Q.

The clags of matrices Q to fullfil the dynemic
exactnesas property is restricted becanse the transfer
matrix between 2z and u is

H(s) = Q(SI - A)"} B (12)
for the original system. For the reduced one 1is

His) = (8T = &L @ (13)

E.S
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since =2 has lower dimension than x, the equality
between (12) anfi (13) is possible only if there is
pole zero cancelation in (12). Thugs the matrix Q Iis
reagtricted to those. creating zero to cancel poles of
matrix A that are not retained in PF.

Two drawbacks associated with aggregation tech-
nique are:

1. The computation of an aggregation matrix requires
the costly computation of theeigenvectors of A.
However under, weak coupling Ref (9) or using eff-
icient algorithms Ref(10), we can operate on small
size matrices.

2. The physical interpretation of the state variables
of the model 1s lost. Besides, there are some new
interactions which were not present between the
original syastem states. Simply there is no strue-
ture preservation.

Another approach which relax the condition of dyn-
amic exactness to one of dynamic approximation while
retaining the structural constraints is suggested 1In
Ref (4). As in the dominant modes rechnique, the eigen.e
values of the reduced model are chosen from the eigenva-
lues of theoripginel system. Some elements of the eigen-
vectors may also be chosen. But, there must be some
relaxation on the eigenvectors in order that the speci-
fied structure can be realized. Two major problems ari-
ses with this technique

1- Non~-uniqueness of the solution.

2- Difficult numerical methods required for the comp-
utation of the parameter values which will given
the desired eigenvalues.
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5= Reduction Using Liapunov Punctions:

This approach of modeling involves determination
of an m-th order model so that the lLiapunov surfaces of
the model and system have tangential matching. That 1s,
obtain a Liapunov function Vm for the model that has
the property

v -
v v
m

in m-dimensional apace, where

Y = % P ¥ (15)

and

Ve odk irQdk | (16)

]

are Liaponuv function for the orginal system-.
Q and P are rejated by

PA + AP = =Q (17)

E.T

and Q 1is any arbitrary positive definite or semidefinite

matrix. Wquation (17) has the form

PA + =§-= - (4'P + Q/2)= S (18)
thus, & = P"H(S - -3-) (19)

the reduced order model can be obtained as follows:-

1) Determine the states to be retsined.

2) Choose Q to be diagonal with 943 = 1, 1 ¢ X
and zero otherwise.

3) Solve (17) for P and (18) for S.

4) Choose Pm from P by deleting those rows and colu-

uns belong to x, . Similarly, we choose 5.
-1

5) Calculate A = p_= (S = _ga) . The reduced order

m
model 1s thus

X = Am X, + Bm u (20)
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6) The reduced input matrix Bm is obtained by filting
of the original and reduced: forced responges at steady

state, i.e. x=0 and X, = ¢ B

B = A (c11 B1 +Cy s 32) (21)
Where
5 °n Cy2
A (22)
o Coo

6~ Comments and Bxtensions:

The presented methods share the advantage of giving
a reduced order model which can be useful in many control
problems. The better understanding the original system,
the rigid the model will be. Rigid in the sense of its
resul ts.

In obtaining reduced order models, we have two main
concerns:
1~ Models which successfully represent the original system
under variety of operating conditions.
2- The computation involved in obtaining the reduced system
should be managable.

However these two requirements are adversely satisfied.
Therefore compromise is aften desirable.

From the point of view of accuracy, the aggregated
model would be better, however computationally expensive.
The dominant mode concept is a rather appealing technique
if some criteria is given to decide upon the order of the
reduced model. Begides the resgsidualized model can be
improved computationally By obgserving that under gimil-
arity transformetion
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x = Nz (23)
or
1 .
X H“n My 2
- (24)

% - A 22 |

where M is the model matrix

thus, x =i, 3 + Mo 2 (253

and ia the solutionof

zl

~
Zy + B, u (26)

wdy By * By

while =z, can be simply obtained as in equation (8) this
yields

Fal Fal
= » -1
X = Mll Z, + ( B1 M.Lz 132 32)11 (27)

Note that the inversgsion of modsal matrix is avoided, which
results 1ln computational advantage.

7- Criteria For Model Retention:

The approximate reduced model which closely represenfa
the original system performance can be decided in terms of
the largest eigenvalue neglected, the size of the original
system and the. gize of reduced system.

Creteria are obtained for the residualized model by
performing & norm bound on the error between the actusal
rates x, and the approximate ones, i.e. by considering
izsz 0 . These creteria are:-

1- With egero initial conditions ans step input, it has
been shown Ref(11), that the error is states due to
neglecting the higher modes depends apon the relation
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um=!n—m/

where n is the order of original system.
m 1s the order of reduced system
is the largest eigenvalue 1o be neglected.

9me1

dm-u-l

The improvement which can be achieved by increasing the
order of the model from m to m+l 1is measured by

2= Relaxing the step input condition and under zero
initial conditlion, the two indices are shown to be
Ref(12), to be :
(Jn-m +1) / Id

“m

V = T il e

s u

m+1|

m+ 1

3~ In Ref(14) under zero initial condition, it 1s shown
that the orror is bounded to,

/le(t) // £ k u

where k 1is a constant and,

m

u, = (fn_m)(ﬁ-m+2) /!dm-:» 1'
15§
Sal e

4- For uniform bounded input, it is claimed, Ref(15), that
under similar conditions as before,

In all creteria, the model of order m is chosen such
that Vm will be maximum.
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8= Examples:=-

(1) Consider the 9th order system whose matrix is

2,77 -3.07  2.98 o 0 1 0 0 =0.599]
26.8 =61.5 0.524 0 0 0.176 0 =0.0923 =32,1
30 ~15.5 =32.2 0 0 0 0 0  ~15.6
0 0 0 =27.7 0 0 0 =0.0828 0
he 0 &4 0 =89.8  -100 0 0 0 0
0 0 0 0 -3875  -100.3 O 0 0
0 0 0 0 0 0  =3.33 o0 0
0  =-223 0 =-47.8 0 0 55.4 =0.35  -222
| o 0 0 0 Yra=1g 4 0 1 0

with input vector b =[0 0 0 0 0 0 3.33 0 0]
The system is reduced to a 3 rd order one in which the reta <
ined states are chosen to be X6, 18’ 19.

Fig (1), (2) and (3) shows the behaviour of the reduced states
when excited by the original input asignal for different reduction

techniques,

(2) Conglder the 15th order system whose eigenvalues are:

d,. ™ ~7T.33 x1077 , 4, = ~2,09 x 107

1 2
-l -1
d, , = =2.77 x 10 + 3 3.55 x 10
3.4
dg = =3.17 x 107
d; , = =3.83 x 101 &+ 3 2.53 x 107t
6,7 3 =
-1

d, = =5.14 x 10
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dg,lo - -1-36 _+_ J 3-12
417,90 = =1:37 + J 4.18

2 -2
dy3,14 = ~1-49 + §3.79 x 10

d15 = =2, 4613

The methods of mode retention as described in sec (7) are
applied to this system and the resulis are shown in table (1),
Based on large Vm we found that creterion of ref (15) 1sa

the most powerful one,

{3) Consider the 9th order system with repeated eigenvalues,:
-0,2, =0,2, =0.6 +J 10 , =30 + J 300, -40, =50, =100

This example 1s intended to show that all c¢riteria are failed
to provide the correct reduced order except method of ref (15) .

Results are given in table (2).

(4) Conclusionas

Different modal reduction techniquea are used to obtain reduced
order model. It has been concluded that liapunov method can be a
good glternative for system reduction Af properly programed. Davias=
on's method which is based on retaining dominant eigenvalues is
system dependent. The residualized model howevexr requires good know-
ledge of the system, 18 shown to be a good alternative with reduced

computation effort.
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