Al-Mansoura University
Faculty of Engineering
Department of Comm. & Electronics.
Electronic Measurements (1), **COM 9123**

First Year Students.
Time: 3 Hours
June 2014
Total 100 Marks

Attempt in all questions and assume any missing data.

Q1:(a)-For the following measurements data sets:

Data Set A: 24.3643	21.1894	23.2292	24.8344	23.3247
24.3519	20.0496	20.6850	24.0938	22.1508.
Data Set B: 23.7683	23.9694	24.5998	24.2236	21.8388
23.1040	23.6564	20.9695	24.5241	22.8460.

Calculate mean, median, standard deviation and the variance for each of the data set shown above. Which one is accurate? (8 Marks)

(b)-Three resistances have the following ratings: $R1 = 15 \Omega \pm 5 \%$; $R2 = 33 \Omega \pm 2 \%$; $R3 = 75 \Omega \pm 5 \%$. Determine the magnitude and limiting error in ohms, if the resistances are connected: 1-in series, 2-in parallel. Also obtain percentage relative limiting error in the resultant. (8 Marks)

Q2:(a)-A voltmeter having a sensitivity of $2 \text{ k}\Omega/V$ reads 90 V on its 150V range, when connected across an unknown resistor in series with an ammeter. The ammeter resistance is 100 Ω and reads 30 mA. Calculate:

1-Apparent resistance. 2-Actual resistance of unknown resistor. 3-Error due to loading effect of voltmeter. 4-Percentage relative accuracy. (8 Marks)

(b)-Figure (1) shows a simple series circuit of R1 and R2 connected to a 250 V DC source. If the voltage across R2 is to be measured by the voltmeters having: 1-A sensitivity of 500 Ω /V, 2-A sensitivity of 10,000 Ω /V. Find which voltmeter will read more accurately. Both the meters are used on the 150 V range. (8 Marks)

Figure (1)

Q3:(a)-A moving coil instrument gives a full scale deflection for a current of 20 mA with a potential difference of 200 mV across it. Calculate: 1-Shunt resistor required to use it as an ammeter to get a range of 0 - 200 A.

2-Multiplier required to use it as a voltmeter of range 0-500 V. (8 Marks)

(b)-A basic D'Arsonoval movement with an internal resistance of 50Ω and a full scale deflection current of 2 mA is to be used as a multirange voltmeter. The voltage ranges are 0-10 V, 0-50 V, 0-500 V. 1- Design the series string multipliers. 2- Design the individual multipliers. (8 Marks)

Q4:(a)-A D'Arsonval movement with an internal resistance of 730 Ω and full scale current of 5mA is available. A multirange ammeter with the ranges of 1A, 5A, and 25A is employing: 1-Derive an expression for individual shunts and

calculate its values. (2)- Derive an expression for Aryton shunts and calculate its values. (8 Marks)

(b)-A 50 Ω basic movement requiring a full scale current of 1 mA is to be used as an ohmmeter. The internal battery voltage is 3V. A half scale deflection marking desired is 1 k Ω . Calculate: 1-Values of R1, and R2. 2-Maximum value of R2 to compensate for a 5 % drop in battery voltage. (8 Marks)

Q5:(a)-The four arms of the Wheatstone bridge, shown in Figure (2), have the following resistances; $AB = 1 \text{ k}\Omega$, $BC = 1 \text{ k}\Omega$, $CD = 120 \Omega$, and $DA = 120 \Omega$. The bridge is used for strain measurement and supplies from 5V ideal battery. The galvanometer has sensitivity of $1 \text{ mm/}\mu\text{A}$ with internal resistance of 200 Ω . Determine the deflection of the galvanometer if arm DA increases to 121 Ω and arm CD decrease to 119 Ω . (9 Marks)

(b)-The temperature dependent resistor is used in one arm of a Wheatstone bridge. The other resistances $R_1 = R_2 = R_3 = 6 \text{ k}\Omega$ and V = 10V. The variation of resistance in $k\Omega$ against temperature is given by: $R = 2 + t/20 \text{ k}\Omega$. Calculate the temperature at which the bridge is balanced. Also calculate the error voltage at 55°C and 95°C .

Q6:(a)-The AC bridge shown in Figure (3) is balanced at 1 kHz. It has following components: $C_1 = 0.2 \mu F$, $R_2 = 500 \Omega$, $R_3 = 300 \Omega$, and $C_3 = 0.1 \mu F$. Derive an expression for the unknown impedance Find the value of Z_x . (9 Marks)

(b)-For the Wien bridge shown in Figure (4), derive an expression for the frequency f of this bridge at a balance condition. Also find the equivalent parallel resistance and capacitance that causes a Wien bridge to null with the following component values: $R_1 = 2.7$ $k\Omega$, $C_1 = 5$ μF , $R_2 = 22$ $k\Omega$, $R_4 = 100$ $k\Omega$. The operating frequency is 2.2 kHz.

a.c Supply Detector

The Property of Hz

Figure (4)

(9 Marks)