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ABSTRACT  

This paper proposes a multi-objective firefly algorithm (MOFFA) to solve the environmental-economic 

power dispatch (EEPD) problem. Also, it presents a modified firefly algorithm (FFA) to solve the economic 

power dispatch (EPD) and the emission dispatch (ED) problems as single goals. The modifications proposed 

on the traditional FFA aim to improve its exploration and ensure the feasibility of the obtained solutions. The 

proposed MOFFA uses an external Pareto set to keep the non-dominated solutions, where a hierarchical 

clustering algorithm is used to get a representative and controlled set of Pareto-optimal solutions. The best 

compromise solution is also extracted from the Pareto set using an approach based on the fuzzy set theory. 

The constraints of EEPD, EPD, and ED problems are power balance constraint, generation limits constraint, 

and transmission power losses. To verify the effectiveness of the proposed algorithms, two methodologies are 

adopted and tested on the IEEE 30-bus test and the 10-unit test system with valve-point loading. In 

methodology 1, the EPD problem and the ED problem are solved separately using the modified FFA. In 

methodology 2, the EEPD is solved as a true multi-objective optimization problem using the proposed 

MOFFA. The simulation results and the statistical analysis ensure the high-quality solutions of the proposed 

algorithms and prove the ability of the MOFFA to produce well-distributed Pareto-optimal solutions.  
 

Keywords: Environmental-economic power dispatch; Firefly algorithm; Multi-objective optimization; 

Pareto-based dominance.   

 

1. Introduction 

The main objective of the economic power dispatch 

problem (EPD) is to determine the output power from 

generation units to meet the system demand such that 

the fuel cost of fossil fuel power plants is minimized 

[1-2]. 

The generation of electric power from fossil fuel 

power stations pollutes the environment as it emits 

several harmful pollutants into the atmosphere. For a 

clean environment, these emissions should be 

minimized. The minimization of environmental 

emissions can be achieved by treating emission as an 

objective in the overall EPD, which turns the problem 

into a multi-objective optimization problem [3-5].  

Multi-objective optimization problem [3-7] is a 

challenging problem due to the conflicting nature of 

the different objective functions, which have to be 

optimized simultaneously. Each objective function 

may have a different individual optimal solution. 

This produces a set of optimal solutions instead of 

one optimal solution. These optimal solutions are 

known as Pareto-optimal solutions [8, 22], and the 

main aim is to find the Pareto-optimal set, which 

contains all non-inferior solutions. 

Mainly, two search directions have been applied to 

solve multi-objective optimization problems. The 

first search direction depends on the idea of 

converting the multi-objective problem into a single-

objective problem by combining the different 

objectives linearly, e.g., the weighted sum method [9-

10]. This approach is simple, but it needs to 

understand the problem to set the weighting factors 

probably. Otherwise, some objectives might 

dominate the others. Besides, several runs with 

different weighting factors are required to find the 

Pareto-optimal solutions. The second search direction 

uses evolutionary algorithms (EAs) where the 

multiple objectives are handled simultaneously as 

competing objectives. The EAs are able to overcome 

most difficulties of the classical methods, as they use 

a population of solutions in their search, so they can 

find many Pareto-optimal solutions in each run [8, 

29].  
The field of nature-inspired EAs has continuous 

growth. Recently, many algorithms are proposed and 

applied to solve the EPD problem, such as Squirrel 

Search Algorithm [6], Cuckoo Search [11], Crow 
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Search Algorithm [12], Whale Optimization Method 

[13], Antlion Optimization Algorithm [14], Moth 

Search Algorithm [15], etc. 

Firefly Algorithm (FFA) is one of the EAs which 

initially proposed to solve single-objective 

continuous optimization problems [16]. Later, a 

hybrid discrete FFA is used to solve multi-objective 

flexible job-shop scheduling problems [17] and 

multi-objective hybrid flow-shop scheduling 

problems [18]. In [17] & [18], the solution of the 

multi-objective optimization problems proposed by 

FFA was based on converting the multi-objective 

problem into a single-objective problem by using the 

weighted sum approach. In [19], the FFA is used to 

solve the multi-objective continuous optimization 

problems and is applied to solve the design 

optimization benchmarks. To the best of the author’s 

knowledge, fewer attempts are carried out to solve 

the multi-objective EEPD problem using FFA [20-

21], and these attempts depend on converting the 

problem from a multi-objective problem into a 

single-objective problem. 

In this paper, a modified FFA is proposed to improve 

the exploration capability of the basic FFA and to 

ensure the feasibility of the obtained solutions. Also, 

a Pareto-based MOFFA with a hierarchical clustering 

algorithm is proposed to solve the EEPD problem 

without converting the problem into a single-

objective problem. The modified FFA is firstly used 

to find the optimum solution of each objective 

function as a single goal, and then the MOFFA is 

used to solve the EEPD as a true multi-objective 

problem. The other sections of the paper are 

organized as follows: The mathematical model of the 

EEPD problem is given in section 2. The details of 

the modified FFA and the Pareto-based MOFFA are 

proposed in section 3. The simulation results are 

discussed in section 4, and section 5 concludes the 

paper.   

 

2. Problem Formulation 

In this section, the objective functions and the 

constraints of the EEPD problem are discussed as 

follows: 

 

2.1 Objective Functions 

1) Minimization of fuel cost: The total fuel cost 

F(PG) in ($/hr) of NG fossil-fueled thermal 

generating units can be found as follows [1]: 
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where PGm is the real power output of m
th

 generator, 

and am, bm and cm are the cost coefficients of the m
th

 

generator. 

In case of considering the valve point loading effects, 

the total fuel cost can be calculated as [12]: 
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Where 𝑃𝐺𝑚
𝑚𝑖𝑚 is the minimum power output of m

th
 

generator, and dm, and em are the cost coefficients of 

the m
th

 generator. 

2) Minimization of emission: The total emission 

E(PG) of nitrogen oxides (NOx) and sulfur oxides 

(SOx) pollutions emitted by generation units in ton/h 

can be expressed as [3]:  
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where αm, βm, γm, δm, and λm are the m
th

 generator 

emission coefficients.  

 

stnCortsnoC meCoyS 2.2  

1) Power balance constraint: The total generated 

power must satisfy the total load demand (PD) and 

the real power losses in transmission lines (Ploss) as 

follows [2]: 
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The Ploss can be computed from the Kron's loss 

formula (B-coefficient) as follows [2]: 
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2) Generation limits constraint: The output power 

from each generator must be within its minimum and 

maximum limits as follows [2]: 
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3.Multi-objective Firefly Algorithm 

In this section, the details of the modified firefly 

algorithm (FFA) and the proposed Pareto-based 

multi-objective firefly algorithm (MOFFA) are given. 

 

3.1 Modified Firefly Algorithm 

FFA is a natural-inspired population-based 

optimization algorithm initially introduced by Xin-

She Yang in 2008 [16]. FFA simulates the fireflies' 

behavior and how they are attracted to light [21]. It 

has more similarity to the optimization algorithms 

employing swarm intelligence, but FFA is much 

simpler in implementation and concept. It uses real 

random numbers. Firstly, the important parameters of 

the basic FFA proposed in [16] & [21] are 

summarized as follows:  
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1. Light intensity: To find the light intensity Ii or 

brightness of each firefly i, the firefly is evaluated 

using the objective function and assign a scalar 

value called fitness. 

       𝑖  𝐹𝑖 𝑠𝑒𝑛𝑛 𝑥𝑖                                                 (7) 
 

2. Attractiveness: The attractiveness (β) between the 

fireflies can be found as follows:                                                         

𝛽( 𝑖 )  𝛽 𝑒𝑥𝑒( 𝛾 𝑖 
 )                                    (8)   

                                                                                         

     where ri,j is the distance between any two fireflies 

i and j, β0 is the attractiveness at r=0, and γ is the 

light absorption coefficient.                 

3. Distance: The distance between any two fireflies i 

and j at positions xi and xj can be calculated using 

the Cartesian Distance method as follows: 

   𝑖  ‖𝑥𝑖  𝑥 ‖  √∑ (𝑥𝑖   𝑥   )
  

                (9)     
                                                                       

 where d is the number of optimized parameters. 

4. Position update: In each iterative step, the 

position of the firefly i is updated as follows: 

 𝑥𝑖
𝑚   𝑥𝑖

𝑚  𝛽(𝑥 
𝑚  𝑥𝑖

𝑚)  𝛼  𝑎𝑠𝑑       (10)  
                                                                    

where α is the randomness parameter. For most 

cases, α   (0, 1), β0=1 and γ varies from 0.1 to 10.  
 

Some modifications are proposed in this paper to 

improve the FFA exploration capability and 

guarantee the feasibility of the solutions, which are: 

 If two parameters of the objective function have 

different possible value ranges, a fixed range of 

random numbers will cause different relative 

randomness for each dimension. To solve this 

issue, the random numbers generated can be 

multiplied by the scale of the dimension to 

produce a vector of scaling values S. Hence, the 

position update defined by Eq. (10) is modified to: 
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     Where β is calculated as follows:  
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where βmin is the minimum value of β. The 

attraction between the fireflies is changed due to 

the value of βmin. Increasing the value of βmin 

increases the desire of the firefly to move towards 

brighter fireflies. Thus a global solution is 

obtained. 

  After updating the fireflies’ positions according to 

Eq. (11), the boundary limits of the variables 

should be checked. If the limits are violated, the 

firefly position is reset to its maximum value or its 

minimum value as follows: 
 

 𝑖𝑓 𝑥  𝑥  𝑚𝑖𝑠  

     𝑥  𝑥  𝑚𝑖𝑠                                  (13)                                                                               

 𝑒𝑠𝑛𝑒 𝑖𝑓 𝑥  𝑥  𝑚𝑎𝑥   

     𝑥  𝑥  𝑚𝑎𝑥  
  

The procedure for solving the EPD problem using the 

modified FFA is shown in pseudo-code in Figure (1). 

 

 

Figure 1- Pseudo-code of modified FFA applied to 

EPD problem 

 

3.2 Proposed Multi-objective Firefly Algorithm 

In a multi-objective optimization problem, if there 

are two solutions x
1
 and x

2
. Solution x

1
 will be better 

than solution x
2
 if and only if it’s better in at least one 

objective and not worse in any of the other 

objectives. In this case, it is said that x
1
 dominates x

2
, 

and x
1
 is called the non-dominated solution [8]. It is 

referred to this concept as Pareto-based dominance 

and to the solutions that are non-dominated within 

the entire search space as Pareto-optimal solutions, 

which compose the Pareto-optimal set.  

The proposed MOFFA is developed by extending the 

basic ideas of the modified FFA and joining them 

with the Pareto-based dominance. Hence, the light 

intensity is redefined as a vector of objective 

functions, e.g., fuel cost and emission, and the 

comparison of light intensities of fireflies i and j are 

modified according to Pareto-based dominance. The 

main features of the proposed algorithm are discussed 

as follows:  

3.2.1 External Pareto-optimal set update: Initially, 

an empty external Pareto-optimal set is created. To 

update the external Pareto-optimal set, the non-

dominated solutions in the population are found and 

copied to the external Pareto-optimal set. Then, the 

 Define α (randomness parameter), β0 (initial attractiveness), βmin 

(min attractiveness), n (number of fireflies ), and γ (light 

absorption coefficient) 

Define 𝑃𝑚𝑖𝑠 , 𝑃𝑚𝑎𝑥 , and cost coefficients of each generation unit   

Define objective function  f(x)  (Eq.1 or Eq. 2) 

Initialize a population of fireflies   

Determine the Light intensity Ii   (Eq.7) 

while (t <MaxGen (maximum number of iterations)) 

         for i=1: n all n fireflies 

              for j=1: i all n fireflies 

                   if (Ij>Ii) 

                      Calculate the distance ri,j  (Eq. 9) 

                      Calculate the attractiveness β (Eq.12) 

Move firefly i towards firefly j in all d dimensions and 

update positions   (Eq. 11) 

Check the boundary limits of each variable   (Eq. 13) 

                  end if 

               Calculate fitness values for new solutions by substituting 

in Eq.1 or Eq.2 if valve-point effects are considered  

               Update light intensity 

              end for j 

         end for i 

Rank the fireflies and find the current best 

end while 

Find the optimal solution  (power output from each generation 

unit at min. cost and corresponding fuel cost)   

End of the algorithm 
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external Pareto-optimal set is searched for the non-

dominated solutions, and all dominated solutions are 

taken off. The size of the external Pareto-optimal set 

is firstly set to a certain value. If the number of 

solutions externally stored in this set exceeds the 

predefined number, the clustering algorithm will be 

used to obtain a representative and controlled Pareto-

optimal set within the predefined size [8, 22]. 

3.2.2 Clustering algorithm: This algorithm is based 

on joining the adjacent clusters iteratively until the 

specified number of groups is reached. The complete 

details of the algorithm are given in [8, 22].  

3.2.3 Best compromise solution extraction: It is 

required to introduce only one solution to the 

decision-maker from the Pareto-optimal set of non-

dominated solutions. This solution is known as the 

best compromise solution. In this paper, the best 

compromise solution will be found based on the 

Fuzzy approach as follows [8, 22-23]: 

Firstly, the objective function Fi is represented by a 

membership function i defined as: 
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{
 

 
                             𝐹𝑖  𝐹𝑖

𝑚𝑖𝑚

  
      

  
      

            𝐹𝑖
𝑚𝑖𝑚  𝐹𝑖  𝐹𝑖

𝑚𝑎𝑚

                                𝐹𝑖  𝐹𝑖
𝑚𝑎𝑚
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where 𝐹𝑖
𝑚𝑖𝑚 and 𝐹𝑖

𝑚𝑎𝑚  are the minimum and 

maximum values of the objective function Fi among 

all non-dominated solutions, respectively. The range 

of i is from 0 to 1. After computing i, the 

normalized membership function k
 for each non-

dominated solution k is calculated as: 

   
∑   

   
   

∑ ∑   
   

   
 
   

                                                    (15)  

                                                                                     

where M is the number of non-dominated solutions. 

The best compromise solution is the solution, which 

has the maximum value of  
k
. 

The pseudo-code of the proposed MOFFA algorithm 

is shown in Figure (2).  

 

4. Optimization Results and Discussion 

In this section, the effectiveness of the modified FFA 

in solving EPD and ED problems, and the proposed 

MOFFA in solving the EEPD problem is 

investigated. The proposed algorithms are applied to 

two widely-used test systems. The first system is the 

IEEE 30-bus test system with 6 generating units and 

283.4 MW load demand [8], and the second system is 

the 10-unit test system with 2000 MW load demand 

and valve-point loading effects [31]. The problems 

are solved with and without power losses. The 

proposed algorithms are implemented using 

MATLAB R2010a. The developed codes are run on a 

personal computer with an Intel Core I5, 4 GB RAM, 

and Windows 8.1 operating system.  

Figure 2- Pseudo-code of the proposed MOFFA 

To solve the EEPD problem, two methodologies are 

carried out to demonstrate the efficiency and the high 

performance of the proposed algorithm: 

Methodology 1: A pure economic dispatch and pure 

emission dispatch are carried out separately using the 

modified FFA to obtain the optimal values of fuel 

cost and emission. 

Methodology 2: The EEPD problem was handled as 

a multi-objective problem where fuel cost and 

emission are optimized simultaneously with the 

proposed Pareto-based MOFFA.  

 

4.1 Setting of FFA Control Parameters  

Modified FFA has a set of control parameters, which 

are βmin, α, γ, n, βo, and MaxGen (max number of 

generations). These parameters affect the quality of 

the optimal solution. So, the best values of these 

parameters should be found to achieve the optimal 

solution to the considered problem. In our problem, 

the values of MaxGen and βo are set to 200 and 1, 

respectively. Several experiments are run by varying 

the values of the other control parameters as follows: 

α is changed from 0 to 1 with a step 0.05, βmin is 

changed from 0 to 1 with a step 0.05, γ is changed 

from 0.1 to 10 with a step 0.1 till 1 and then with a 

step 1, and n is changed from 50 to 250 with step 5.  

For each combination, the optimization problem was 

solved, and the statistical indices of the objective 

functions are calculated. The optimal settings of 

control parameters for the modified FFA and the 

proposed MOFFA are given in Table (1).

 

Define α, β0, n and γ  
Define decision variables, constraints and objective functions 

f1(xi)......, fNo(xi) with xi=(x1,..............,xd)
T
 in domain d   

Initialize a population of fireflies  xi ( i=1,2,........,n) 

and create the empty external Pareto-optimal set. 

Determine the Light intensity Ii at xi by  [f1(xi), f2 (xi)......, fNo(xi)] 

while (t <MaxGen) 

     for i=1:n all n fireflies 

          for j=1:i all n fireflies 
                if (firefly j dominate firefly i) 

                   Calculate distance ri,j (Eq. 9)  

                   Calculate attractiveness β (Eq.12) 

                 Move firefly i towards firefly j in all d dimensions and  

update positions using Eq. (11) 

                 Check the boundary limits of each variable (Eq. 13) 

                else          

                    Move firefly i randomly 

                end if 

            Calculate fitness values for new solutions 

            Update light intensity 

          end for j 

     end for i 

  Updated external Pareto-optimal set as given in section 3.2.1  

end while 

Select the best compromise solution using fuzzy set theory as 

given in section 3.2.3   

End of the algorithm 
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Table 1- Optimal parameters for the modified FFA and the proposed MOFFA 

Case 1: IEEE 30-bus test system Case 2: 10-unit test system 

  Methodology 1 (FFA) Methodology 2 (MOFFA) Methodology 1 (FFA) Methodology 2 (MOFFA) 

 Without 

losses 

With 

losses 

Without 

losses 

With 

 losses 

Without 

losses 

With 

losses 

Without 

losses 

With 

losses 

n 50 50 150 150 150 100 100 100 

α 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.1 

𝛽  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

𝛽𝑚𝑖𝑚 0.5 0.8 0.9 0.9 0.9 0.8 0.9 0.8 

𝛾 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

4.2 Test Case 1: IEEE 30-bus test system  

Methodology 1: The best results for fuel cost and 

emission when optimized individually along with 

output power from each generation unit and the 

corresponding statistical indices with and without 

power losses are listed in Table (2). The best value of 

fuel cost obtained by FFA is 600.1127 $/hr without 

power losses and 605.439 $/hr with power losses. 

While the best value of emission is 0.1942 ton/hr. A 

comparison between the results of the modified FFA 

and other reported algorithms is listed in Table (3). It 

is clear that the proposed FFA gives the best results 

compared to the other algorithms. For checking the 

robustness of FFA, 20 individual runs are considered. 

The corresponding statistical indices are listed in 

Table (4). The statistical results show that the 

proposed algorithm produces high-quality solutions. 

Also, it is clear that FFA is superior to PHOA [24], 

MSCO [25], and MOBSA [26] as it gives better 

values of the statistical results, i.e., mean, best, worst, 

and standard deviation. 

 Methodology 2: The optimal settings of MOFFA 

control parameters are given in Table (1). The Pareto-

optimal set has 20 non-dominated solutions. Out of 

them, two solutions represent the best cost and the 

best emission. If the number of solutions is more than 

20, the clustering algorithm is applied. The values of 

the best cost, the best emission, and the best 

compromise solutions obtained for this case with and 

without power losses are given in Table (5). The 

diversity of the Pareto-optimal set over the trade-off 

surface is shown in Figure (3) in case of neglecting 

losses and Figure (4) in case of considering losses. It 

can be seen that the proposed MOFFA provides a 

well-distributed Pareto front. The results of the 

proposed MOFFA are compared to some of the 

reported algorithms to evaluate the performance of 

the proposed MOFFA regarding Pareto optimal 

solutions. The comparative results are listed in Table 

(6). It can be seen that the proposed MOFFA gives 

good results compared to other algorithms. 

 

 

4.3 Test Case 2: 10-unit test system with valve-

point loading effects 

Methodology 1: The best solutions for fuel cost and 

emission objective functions when optimized 

individually with and without power
 
losses are listed 

in Table (7). The proposed FFA reaches minimum 

values of 106170 $/hr and 3651.1 ton/hr for fuel cost 

and emission, respectively, in case of neglecting 

power losses, and it gives a minimum value of 

111140.0 $/hr for fuel cost and 3915.7 ton/hr for 

emission when the power losses is considered. For 
checking the robustness of FFA, 50 individual runs 

are considered. The corresponding statistical indices 

are listed in Table (8). The statistical results show 

that the proposed FFA produces high-quality 

solutions. A comparison between the proposed FFA 

and some of the reported algorithms in case of 

considering power losses is given in Table (9). Tables 

(8) and (9) clear that the proposed FFA gives the 

minimum values of cost and emission compared to 

the other methods, which confirm its high 

performance. 

 Methodology 2: For this methodology, the Pareto-

optimal set has 30 non-dominated solutions. Figure 

(5) shows the diversity of the Pareto-optimal set over 

the trade-off surface in case of neglecting power 

losses, and Figure (6) shows the non-dominated 

solutions in case of considering power losses. It is 

obvious that the solutions are well distributed on the 

Pareto-front. The non-dominated solutions for the 

best cost, best emission, and best compromise 

solutions are listed in Table (10). The comparative 

results are listed in Table (11) in case of neglecting 

power losses and Table (12) in case of considering 

power losses. As clear, the proposed MOFFA 

outperforms PHOA [24] as it gives better values for 

the best cost and best emission. From Table (12), the 

range of fuel cost for the comparative algorithms is 

from 112807 $/hr to 113539 $/hr, and the range of 

emission is from 4109 ton/hr to 4188 ton/hr. While 

the best cost provided by MOFFA is 112570 $/hr and 

the best emission is 4199 ton/hr.  
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Table 2- Best solutions for the IEEE 30-bus test system obtained by the modified FFA 

              

Outputs 

Without losses With losses 

Best cost Best emission Best cost Best emission 

P1 (MW) 11.1961 41.0717    11.1204    41.2779 

P2 (MW) 29.9399 46.1656    28.8625    44.9044 

P3 (MW) 52.6840 53.5317    58.6937    55.0540 

P4 (MW) 101.4161 39.4782    98.5998    40.0340 

P5 (MW) 52.1623 53.6311    52.7615    54.4915 

P6 (MW) 36.0016 49.5218   35.6601   51.2467 

  Fuel cost ($/hr) 600.1127 637.332     605.438  643.155 

Emission(ton/h) 0.2219 0.1942 0.2206   0.1942 

Losses(MW) - - 2.2980 3.6085 

 

 

 

Table 3- Comparison of the best solution for fuel cost minimization and emission minimization for  Case 1 

 Without losses With losses 

Objective Method Fuel cost  

($/hr) 

Emission 

 (ton/h) 

Method Fuel cost 

 ($/hr)  

Emission 

(ton/h)  

B
est 

F
u

el C
o

st 

FFA 600.1127     0.2219     FFA 605.4390     0.2206   

PHOA[24] 600.1321 0.2812 MODE [8] 608.0658 0.2193 

MSCO[25] 600.5800 0.2243 MOPSO[29] 607.7900  0.2193 

θ-PSO[27] 601.1260  0.2223 MBFA [30] 606.1700 - 

FSBF [28]  600.1141 0.2220 MODE [31] 606.4160 - 

NSBF [28]  600.2704 0.2198    

   

B
est 

E
m

issio
n

 

 FFA 643.1549 0.1942 FFA 643.1549 0.1942 

PHOA[24] 639.3130 0.1942 MODE [8] 645.0850 0.1942 

MSCO[25] 650.3365 0.19427  MOPSO[29] 644.74 0.1942 

θ-PSO[27] 638.3410 0.19421 MBFA [30] - 0.1942 

FSBF [28] 638.2835 0.1942  MODE [31] - 0.1942 

NSBF [28] 642.1336 0.1944     

 

 

 

Table 4- Statistical results of the EPD and ED problems for 20 runs obtained by the modified FFA for Case 1 

 

Objective 

 

Statistical indices 

Without losses With Losses 

FFA PHOA [24] MSCO [25] FFA MOBSA [26] 

E
P

D
 

Min (cost) 600.1127 600.1138 600.5800 605.4380 605.9984 

Mean (cost) 600.1321 600.1321 601.9624 605.4878 605.9984 

Max (cost) 600.1658 600.8281 602.9957 605.7656 605.9985 

SD 0.0113 0.0738 0.5924 0.0793 1.52E-05 

E
D

 

Min (emission) 0.1942 0.1942 0.1942 0.1942 0.194179 

Mean (emission) 0.1942 0.1943 0.1945 0.1942 0.194179 

Max (emission) 0.1942 0.1956 0.1949 0.1942 0.194179 

SD 6.1829E-6 1.4697E-4 0.0002 1.3183e-005 2.83E-09 
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Table 5- Best solutions of the multi-objective EEPD problem provided by MOFFA for Case 1 

 

Outputs 

Without losses With Losses 

Best cost   Best emission   Best compromise Best cost Best emission    Best compromise 

P1 (MW) 10.560 39.06 10.56 8.5690 41.8703    27.7721    

P2 (MW) 30.250 44.02    36.90  28.6899 44.5998    35.3812    

P3 (MW) 51.070 52.74 52.21 62.7773 53.3107    52.6529    

P4 (MW) 101.39 42.55  71.26 97.0809 43.6135    70.2097    

P5 (MW) 55.660 54.86    60.72 51.8414 54.2257     57.7703     

P6 (MW) 34.460 50.17     40.47 36.6625 49.2894 42.2010 

Fuel cost ($/hr) 600.18 633.35 607.87 605.6763 641.9913 615.4485 

Emission (ton/hr) 0.2224   0.1943   0.2028   0.2209 0.1943   0.2011   

Losses (MW) - - - 2.2210 3.5094 2.5872 

 

Table 6- Comparison of the best fuel cost and the best emission provided by different algorithms for Case 1 

Without losses            With losses  

 Method Fuel cost ($/hr) Emission (ton/h) Method Fuel cost ($/hr) Emission (ton/h) 

B
est 

F
u

el C
o

st 

MOFFA 600.18 0.2224   MOFFA 605.6763 0.2209 

MNSGA-II-

MPVDE [3] 

607.13 0.2031 MNSGA-II-

MPVDE [3] 

614.2687 0.2009 

SPEA [23]     600.22      0.2206 - - - 

NPGA [23] 600.31 0.2238 - - - 

NSGA [23] 600.34  0.2241 - - - 

FCPSO [32] 600.13 0.2222 FCPSO [32] 607.786 0.2201 

SPEA2 [32] 600.11 0.2221 SPEA2 [32] 605.548 0.2208 

B
est 

E
m

issio
n

 

MOFFA 633.350 0.1942 MOFFA 641.9913  0.1942   

MNSGA-II-

MPVDE [3] 

637.872 0.1942 MNSGA-II-

MPVDE [3] 

640.2599 0.1942 

SPEA [23]     640.420 0.1942 - - - 

NPGA [23] 636.040 0.1943 - - - 

NSGA [23] 633.830 0.1946  - - - 

FCPSO [32] 638.358 0.1942 FCPSO [32] 642.896 0.1942 

SPEA2 [32] 644.112 0.19418 SPEA2 [32] 646.190 0.1942 
 

 

Figure 3-Pareto-optimal front of Case1 without losses 
 

 

    Figure 4- Pareto-optimal front of Case1 with losses
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Table 7- Best solutions for fuel cost minimization and emission minimization obtained by the modified FFA for 

Case 2 

 

Outputs 

Without power losses With power losses 

Best cost($/hr)  Best emission (ton/hr) Best cost($/hr) Best emission(ton/hr) 

P1 (MW) 55.0000    55.0000    54.9357    54.9537 

P2 (MW) 80.0000    80.0000    80.0000   79.5000    

P3 (MW) 86.0299    76.2499    104.7861    81.0900    

P4 (MW) 82.5017    78.2748   97.8150    82.4353   

P5 (MW) 67.6984    160.0000   83.4184    160.0000   

      P6 (MW) 70.0000   240.0000   80.5115   240.0000   

P7 (MW) 289.2816   273.7016   300.0000   296.7648   

P8 (MW) 329.8361   275.8853   340.0000   292.4923   

P9 (MW) 470.0000   378.9602   470.0000   391.3080   

P10 (MW) 469.6522 381.9281 470.0000 398.2312 

Fuel cost($/hr) 106170 111840 111140.0 116160 

Emission(ton/hr) 4273.5 3651.1 4544 3915.7 

Losses(MW) - - 81.5 76.8 

 

 

Table 8- Statistical results of the EPD and ED problems for 50 runs of the modified FFA for Case 2 

 

Objective 
 

Statistical indices 

Without power losses With power losses 

Proposed FFA PHOA [24] MSCO [25] Proposed FFA 

E
P

D
 

 

Min (cost)  1.0617E5   1.0621E5 1.06198E5 1.1114E5 

Mean (cost) 1.0618E5 1.0621E5 1.0632E5 1.1115E5 

Max (cost) 1.0622E5 1.0621E5 1.0645E5 1.1118E5 

SD 6.0580 1.782E-11 6E-4 6.5921 

Emission at Min. cost 4.2735E3 4.28547E3 4.2747E3 3915.7 

E
D

 

Min (emission) 3651.1000 3661.8815 3660.7106 3916.6 

Mean (emission) 3651.1000 3661.8815 3660.7106 3918.7 

Max (emission) 3651.1000 3661.8815 3660.7106 0.7631 

SD 0.0000 0.0000 0.0000 1.1114E5 

Cost at Min. emission 1.1184E5 1.1182E5 1.1202E5 1.1115E5 

 

Table 9- Comparison of  the best solution for fuel cost minimization and emission minimization for Case 2 with 

power losses 

 Method Fuel Cost ($/hr) Emission (ton/hr) 

B
est  F

u
el 

C
o

st 

FFA 111140.0 4544.0 

PHOA [24] 112130.0 4520.0 

BSA[26] 111498.0 4572.0 

TLBO[33] 111500.0 4563.3 

QOTLBO [33] 111498.0 4568.7 

B
est 

E
m

issio
n

 

FFA 116130.0 3915.7 

PHOA [24]  114130.0 3889.0 

BSA[26] 116412.0 3932.0 

TLBO[33] 116412.0 3932.2 

QOTLBO [33] 116412.0 3932.2 
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Table 10- Best solutions of the multi-objective EEPD problem provided by MOFFA for Case 2 

 

Outputs 

Without power losses With power losses 

Best cost Best emission Best compromise Best cost Best emission Best compromise 

P1 (MW) 45.6986    53.5470    55.0000    44.6722    53.0690    51.5264    

P2 (MW) 76.5589    76.4696    69.8971    78.9384   80.0000    72.1358    

P3 (MW) 96.5634    87.3736    66.4447    109.5644   84.1992    79.7071    

P4 (MW) 96.2679    63.8510   91.1972   105.9777    88.4993   84.0658   

P5 (MW) 67.8787    157.1030   125.0540   83.2215   145.8445   116.9398   

P6 (MW) 70.0000   240.0000   144.4259   106.6654   236.6008   163.8571   

P7 (MW) 300.0000   289.7540   287.2129   300.0000   290.2082   279.4257   

P8 (MW) 340.0000   246.8066   308.9380   332.8129   248.0537   328.1406   

P9 (MW) 444.0589   392.8178 440.0804 461.6090   443.2627   443.7745   

P10(MW) 462.9736   392.2773 462.9736 457.1223 407.7897 459.9927 

Fuel cost ($/hr) 106380 111430 107930 111470 115590 112570 

Emission(ton/hr) 4294.9    3682.8 3901.3 4506.1 3990.9 4199.3 

Losses (MW) - - - 80.6 77.5 79.6 

 

 

Table 12- Comparison of the best compromise 

solution provided by different algorithms for Case 2 

with power losses 

Method Fuel Cost 

($/hr) 

Emission 

(ton/hr) 

Losses 

(MW) 

MOFFA 112570 4199.30 79.60 

MOBSA[26] 112807 4188.09 84.504 

MODE [34] 113484 4124.9 84.33 

NSGAII [34] 113539 4130.2 84.25 

PDE [34] 113510 4111.4 83.9 

SPEA-2 [34] 113520 4109.1 84.1 

GSA [35] 113490 4111.4 83.987 

ABC-PSO 

[36] 

113420 4120.1 84.174 

EMOCA [37] 113445 4113.98 83.56 

 

 

 

 
         Figure 5- Pareto-optimal front of Case 2 

without losses 

 

 
             Figure 6- Pareto-optimal front of Case 2 

with losses 
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Table 11- Comparison of the best fuel cost and best 

emission provided by MOFFA for Case 2 without 

power losses 

 Method Fuel Cost 

($/hr) 

Emission 

(ton/hr) 

Best 

Fuel 

Cost 

MOFFA 106380 4294.9  

 PHOA [24] 106720 4102.5 

Best 

Emission 

MOFFA 111780 3682.8   

PHOA[24] 111700 3699.3 
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5. Conclusions   

In this paper, a Pareto-based MOFFA is proposed and 

successfully applied to solve the EEPD problem. The 

problem is formulated as a true nonlinear constrained 

multi-objective optimization problem with two 

competing objectives, which are fuel cost and 

emission. The concept of FFA for single-objective 

optimization is extended to solve multi-objective 

optimization. A hierarchical clustering algorithm is 

successfully applied to obtain a representative and 

controlled Pareto-optimal set. The best compromise 

solution is found using an approach based on fuzzy 

set theory. Also, a modified firefly algorithm (FFA) 

is proposed to solve the economic power dispatch 

(EPD) and the emission dispatch (ED) problems as 

single goals. The proposed algorithms are applied 

and tested on the IEEE 30-bus test system and the 10-

unit test system with valve point loading effects to 

demonstrate their effectiveness. Two different 

methodologies have been efficiently carried out. The 

results prove the ability of the modified FFA and 

proposed MOFFA to solve the single and multi-

objective optimization, respectively while generating 

well-distributed Pareto-optimal solutions with 

satisfactory diversity characteristics. Also, the results 

of the best cost and best emission obtained by the 

algorithms for both single and multi-objective 

problems are close, which indicates that the search of 

the proposed MOFFA span over the entire trade-off 

surface. The comparison with the reported results 

clears the high efficiency of the proposed algorithms 

as they outperform the other reported algorithms and 

confirm their potential to solve the single and multi-

objective EEPD optimization problem. 
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