Menoufia University
Engineering Math.& Physics Department
Final Exam—First Year-First Semester
Date: 23/1/2020

Full Mark: 90(each Question 15-each part 5)

Plank's constant = $6.62 \times 10^{-34} J.s$, velocity of light $c = 3 \times \frac{10^8 m}{s}$, mass of electron $m = 9.1 \times 10^{-34} J.s$

 $10^{-31} Kg$, charge of electron $e=1.6 \times 10^{-19} C$, Boltzmann constant $k=1.38 x 10^{-23} J/K$

Answer the Following Questions:-

- [1-a] Discuss briefly the particle-wave duality according to quantum theory.
- [1-b] Consider an electron of mass (m) moving in x-direction in a finite potential well of width (L), such that (V=0) inside and (V=Vo) outside the well. Find the eigenfunctions and the eigenvalues.
- [1-c] Explain the effect of well depth on the probability of finding the electron and the effect of well size on energy levels.
- [2-a] Compare between Fermi-Dirac and Maxwell-Boltzmann distributions.
- [2-b] Draw the band diagram and indicate the Fermi level for:
 - Conductors ii) Semiconductors iii) Insulators
- [2-c] Electrons with a maximum kinetic energy of 3eV are ejected from a metal surface by ultraviolet radiation of 1500A. Compute:-
- i) the work function of the metal ii) the threshold wavelength iii) the stopping potential
- [3-a]Define the transition temperature of a superconductor and describe two ways to determine it.
- [3-b] Discuss the Meissner effect then compare between typeI and typeII superconductors.
- [3-c] Calculate the emitted frequency and wavelengthwhen an electron in a three-dimensional well makes a transition from the second excited state to the ground state. Assume the well is cubic of side length 0.5nm.
- [4-a] Draw the following: (101), (1 $\overline{1}$ 1), (0 $\overline{1}$ 1), [110], [$\overline{1}$ 11]
- [4-b] Define: Space lattice-Unit cell-Crystal systems-Coordination number-Miller indices.
- [4-c] In X-ray diffraction experiment if the angle of the first order diffraction $\theta=35^{\circ}$ and the wave length is $\lambda = 2.5 \, A^{\circ}$. Calculate the distance d between planes
- Explain the optical absorption and draw the band diagrams for: [5-a]
 - intrinsic semiconductors ii) extrinsic semiconductors
- [5-b] Findand draw the number of atoms per unit cell for the following: SC, BCC and FCC
- [5-c] Calculate the inter-planer distance for:-
- (100), (111) planes in a simple cubic with lattice constant of 4.2x10⁻¹⁰m.
- [6-a] Define:- refractive index-direct and indirect band gap semiconductors-colour centers-excitons.
- [6-b] Explain the physical origin of K,L and Mseries of X-ray.
- [6-c] In Coolidge tube if the high tension voltage $V = 25 \, KV$, calculate the velocity of the accelerated electrons v and if an electron looses all its energy calculate the frequency and wavelength of the produced X-ray.