Menoufia University
Faculty of Electronic Engineering
Dept. Industrial electronics and Control Eng.
Final-TERM Exam (3rd Year)

Time: From 10 Am to 1 PM 25/12/2019. Linear Control System. (ACE 312)

C. C Le Will Fell Palling

Pare (II) Answer the following questions:

Question (1): [12 Degrees]

i) Given the electrical network of Figure, find a state-space representation if the output is the current through the resistor. Select the state variable as: $x_1=i_L$ and $x_2=v_c$.

ii) A system is described by its transfer function

$$\frac{Y(s)}{R(s)} = \frac{2}{(s+2)(s+1)}$$

- a) Determine the state space representation.
- b) Determine the unit step response of the system when the initial conditions are $x_1(0) = 0$ and $x_2(0) = 1$.

Question (2): [13 Degrees]

i) Consider the nonlinear system model given as:

$$\dot{x}_1 = 3e^{2x_2} + 6x_1 + u$$

$$\dot{x}_2 = 4\sin x_1 + 0.5x_2 + 3u$$

- a) Find a linearized model at the equilibrium point $x_1 = x_2 = 0$ and
- b) Check the system stability of the linearized model.
- ii) Consider the system model given as:

$$\dot{\mathbf{X}} = \begin{bmatrix} 1 & 0 \\ -4 & -5 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{u}$$

$$y = [1 \quad 0 \quad 0]X$$

Design a state-feedback controller u = -kX + r such that the closed loop poles are located at -2, -3

Page (1)

Best Wishes

Dr. Ebrahim A. El-hamid