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Abstract - Two adaptive fuzzy logic controller (AFLC) topologies for the DC-DC
converfer are developed and presented in this paper. They essentially consist of
combining fuzzy inference system and neural networks and implementing them within
the framework of adaptive networks. The architecture of the AFLC along with the
learning rule, which is used to give an adaptive and learning structure to a fuzzy
controller, is also described. The emphasis here is on fuzzy-neural-network control
philosophies in designing a novel controller for the DC-DC converter that allows the
benefits of neural network structure to be realized without sacrificing the intuitive
nature of fuzzy system. The AFLC topologies are built on Matlab environment and
tested for both the buck and buck boost converter for load regulation and line
regulation. The proposed AFLCs have satisfactory results for tracking the reference

output voltage.

1. Introduction

For DC/DC Converters with constant output
voltage, it is always desirable that the output
voltage remains unchanged in both steady state and
transient operations whenever the supply voltage
and/or load eurrent are disturbed. This condition is
known as zero-voltage regulation and it means that
the output voltage is independent of the supply
voltage and the load current. The DC-DC converters
are generally divided into two groups: hard-
switching converters and soft-switching converters
{1, 2]. In hard-switching converters, the power
switches cut off the load current within the turn-on
and turmoff times under the hard switching
conditions. The output voltage is controlled by
adjusting the on time of the power switch, which in
turn adjusts the width of a voltage pulse at the
output. This is known as PWM control. In soft-
switching converters, resonant components are used
to create oscillatory voltage or current wavcforms
so that the zero-voltage switching or zero-current
switching conditions could be crcated for the power
switches, For many years, control design for
converters is carried out through analog circuits,
which limited them to mostly Pl controller
structure. The Pl controllers generally give

overshoot in output voltage and high initial current
when rise time of response is reduced. Feed forward
types of controllers have also been designed by
sensing the input voltage to improve line regulation
in applications with a wide range of input voltages
and load currents [3]. However, direct sensing of
the input voltage through a feed-forward loop may
induce large-signal disturbances that could upset the
normal duty-cycle of the eonverter, Using human
finguistic terms and common sense,

several fuzzy logic controllers have been developed
and implemcnted for the DC-DC converters [4-8].
These controllers have shown promise in dealing
with nonlinear systems and achieving voltage-
regulation in buck eonverters. Fuzzy logic control
uses human like linguistic terms in the form of IF-
THEN rules to capture the nonlinear system
dynamics. Once in place, the fuzzy rules will not be
able to adapt themselves to adequately capture the
dynamics and external disturbances of the
converter.  Although achicving many practical
successes, fuzzy control has not been viewed as a
rigorous sciencc due to a lack of formal analysis
and synthesis techniques. As a result of this, a lot of
work has bcen done to develop adaptive fuzzy
controllers as well as automate the modeling
process as much as possible. Recently, the
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resurpence of interest in artificial ncural networks
has injected a new driving force into fuzzy
literature.

One of the major features of neural nctworks is their
learning capability. They leamm from data and
fecdback. Once trained, neural networks will be
able to deal with the nonlincar parameter of the
problem at hand. A learning/training mechanism is
usually used to update the nonlinear parameters of
the network architecture. On the other hand, fuzzy
logic or fuzzy interface systems can also deal with
nonlinear systems but they do not cmploy any
learning mechanism. Fuzzy inference systems use
human like linguistic terms in the form of IF-
THEN rules to capture the nonlinear dynamics of
the problem at hand. To become adaptive, fuzzy
interface system must be able to learn how to adjust
their paramcters in order to capture the dynamics of
the system. To become adaptive, fuzzy interface
systems can be cquipped with a learning algorithin
adopted from neural networks. The marriage of
neural network learning techniques and fuzzy
interface systems has resulted in a very powerful
strategy known as adaptive-neural-network fuzzy
systems. In this paper two different topologies for
the adaptive fuzzy logic controller topologies are
developed and implemented.

2. Development of the Adaptive F ﬁzzy Logic
Controller

The purpose of converting the fuzzy controller to an
adaptive Fuzzy logic controller (AFLC) is to tunc
the controller with learning mechanism (numerical
data). Training the AFLC with the back propagation
algorithm allows the internal representation of the
input and output inembership functions of the fuzzy
rules to be updated to accommodate the desircd
numerical data. There are two different topologics
developed in this research. The converter s
represented by a “black box” from which we only
extract the terminals corresponding to input voltage
(V1), output voltage (Vo), one inductor current (iL),
and controlled switch (§). From the measurements,
the controller provides a signal proportional to the
converter duty cycle, which is then applied, to a
standard pulse width modulation (PWM) modulator.
Both fuzzy logic principles and learning functions
of neural networks are employed together to
construct the adaptive fuzzy-network inference
system for both topologies. Initially, a basic fuzzy
logic controller is set up utilizing linguistic rules
and then numerical data is used for training the
controller. The AFLC used in the two topologies
has similar architecture in all cases so as to simplify
and pgeneralize the discussion. The number of
membership functions is chosen as five so as to

cover the cntire input spacc. The triangular
membership function is chosen owing to its
simplicity and its symmelrical properties. The
initial values of the premise parameters (the corner
coordinates of the triangle) are chosen so that the
membership functions are equally spaced along the
operating range of cach input variable.

2.1. Adaptive Fuzzy Logic Controller, Topology 1

6-layer neural network architecture is
proposed. Figurc 1 shows the module of the neural
network architecture. The inputs to this topology ave
the error in the output voltage and the error in the
inductor current. The two input nodes in layer |
only transmit input signals to the next layer. Each
node corresponds to one input variable. For every
node i in this layer, the input and the output of the
nctwork are represented, respectively.

ne!i' =X ,' s
Y' = fl(net') = net|
Where, X represents the ith input to the node 1.

The nodes in layer 2 are term nodes that act as 3
mernbership functions to express the input/output
fuzzy linguistic variables. In this project, the
Iriangular activation function will be used to
represent the membership function. Therefore, for
the j™ node.

2
X! -n,
net? = ——»——-———( LY )
2
[ ¥ -
Xi-a a <x, <5,
b, -a,
Y) = fj' (net}) = nelf =y b <x, <,
Cl —bl
0 Otherwise
L

The weights between the input and the membership
layer arc assured to be unity.

The fuzzy scts defined for the input/output variables
are positive big (PB), positive smali (PS), zero
{ZE), negative big (NB), and negative small (NS).
Therefore, 10 and 25 nodes are included in layers 2
and 3, respectively to indicate the input/output
linguistic variables. Each node in layer 3 is denotcd
by IT which muitiplies the incoming signal and
outputs the result of the product. Consequently,
each node of this layer is a rule node that represcnts
one fuzzy control rule. In total, there are 25 nodes in
layer 3 to form a fuzzy rule base for two linguistic
input variables. The links of layer 3 define the
preconditions and the outcome of the rule nodes,
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respectively. For cach rule node, there are two fixed
links from: the input tertn nodes.
For the £” rule node.

3 3 33
nel, -l'lj w, X7,

Y] = f)(net]) = net]

Where X; represents the /* input to the node of layer
3, and wy is the link that connects the output of the
/" node in layer 2 with the input to the ¥ node in
layer 3. The weights between the input and the
membership layer are also assumed to be unity. The
links of layer 4 will be adjusted in response to
varying control circumstances. The link weights, wy
represent the output action of the #” rule. Each node
in layer 4 consists of nonlincar mapping, which are
sigmoidal functions. The sigmoidal activation
function imposes bounds. On the signal to enhance
stability. For the /" node in this layer, the input and
output of the network are represented as:

net} =w,Y,;,
2
Y = f (net])= -1
=7 nety) 1+ exp(~y.net})

The output of layer 5 is the main output and acts as
a defuzzifier. The nodes &,and AJ, in this layer
are labeled X and they sum all incoming signal to
cach branch to obtain the final inferred results for
d,aAd,;.

Y = fi(netl) = net
The fifth layer is the one we training or updating its

weights, w, which represents the weight connecting
layer k and layer m, to satisfy the desired value.

The output of Layer 6 is the summation of & ,and

the integration of AJ, gencrates the change in the
converter duty cycle.

Elsew

Figure 1. Architecture of the Adaptive Fuzzy Logic
Controller, topology 1.

2.2 Adaplive Fuzzy Network, Topology 11

This topology is a 5-layer topology as shown in
Figurc 2. The inputs to this topology arc the error in
the output voltage and the rate of change in the
output voltage. The first four layers are similar to
the ones in the first topology. The fourth layer is the
one in which the weights are to be adjusted using
the ANN back-propagation based on the desired
value of the output. The output of layer 5 is the
output layer and acts as a defuzzifier. ln this layer,
all incoming signals are summed to obtain the final
inferred results for the change in the duty cycle..

nety = wyl',
Y} = [l (net])=net,
The fifth layer is the one we training or updating its

weights, wy, which represents the weight connecting
layer k and layer m, 1o satisfy the desired value.

Figure 2. Architecture of the Adaptive Fuzzy Neural
Network Controller, topology 11

3. Learning Algorithm

The only layer that the weights are trained is the
fifih fayer for topology I and the fourth layer for
1opotogy H. The back-propagation network is used
to train the weights of this layer. The fearning
algorithm used can be described in the following
steps:

Step 1: Calculate the error between the desired
value and the actual output, Error(p) =

Jdmm-d = d)ufput(p)
Step 2: Calculate the error gradient, delro(p)
delto(P) = 3y (P)* (1~ 8 yms (P))* error(p)
Step 3: Calculate the weight correction
Aw,, (m, p) = 17 * delto(p) * out(m, p)
Step 4: Update the weights
w,,, (m, p+1) = w,, (m, p) + Aw,, (m, p)
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Where

n: Learning rate and p: Iteration number
Step 3: Calculate the new output voliage value and
go back to step 1

4. Simulation Results

Several test cases were conducted 1o asscss the
performance of the proposed adaptive fuzzy
inference control system for tlic two control
topologies. However, for briefuess, only few cases
are rteported for illustration purposes. After
designing the best stand-alone fuzzy controllers, the
effectiveness of combining both the fuzzy logic and
adaptive fuzzy-neural controllers is examined.
Selected of test results performed on several types
of DC-DC counverter arc illustrated in Figs. 3-12.

4.1, Case A Buck Converter under Load
Regulat ion, Fuzzy Logic Topology 11

In this case, the fuzzy controller of topology-Il is
considered for a buck-converter under load
regulation. The load resistance is varied from 5 Q to
3 Q and back to 5. TFigure 3 shows the
performance of the output voliage tracking for the
fuzzy controller compared with the uncontrolled
case, while Fig. 4 displays the corresponding duty
cycle. Geod tracking performance is achieved at all
times, but still not as perfect as required as there are
ripples in the output voltage and the duty cycle.

It is also shown that when the load suddenly
changes from 5 Q2 to 3 Q at time 0.015 scconds due
to the decrease in the load resistance, the original
duty cycle decreases resulting in decreasing the
converter output voltage before it stabilizes again.
On the other hand, when the load resistance
increases suddenly from 3 Q to 5 € the duty cycle
increases resulting in increasing the output voltage
that oscillates a little before it stabilizes again.
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Fig. 3. Output Voltage for Buck Converter
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Fig. 4. Duty Cycle for Buck Converter

It is also shown that when the output voltage is
lower than its reference value, the fuzzy rules
always try to add positive change of the duty cycle
to bring the output voltage as close as possible to its
references value, 1 = 0.015,0.041 and 0.043 sccond.
On the other hand, when the output voltage is
higher than its reference value, the fuzzy rules add
negative change (o the duty cycle to bring the
output voltage back to its reference value, t= 0.016,
0.04 and 0.043 sccond. However, the output voltage
still does not match with its refecrence value,

4.2. Casc B : Buck-Boost Converter under Load
Regulation, Fuzzy Logic Topology 1

In this casc, the fuzzy controller of topology-l is
examined for a buck-boost converter where the load
resistance is varied from 20 2 to 150 £2 and back 10
2002 as shown in Figure 5. Figure 6 shows the
corresponding inductor current due to the load
variation. Figurc 7 shows the corresponding duty
cycle of the buck-boost converter under this
condition, it also shows that when the load
resistance is varied suddenly from 20 Q to 150
and back (o 2082, the duty cycle is responding to
these changes with high accuracy. Figure 8 shows
that the fuzzy comtroller abmost brings the output
voltage to its reference value most of the time,
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Fig. 5. Load Changes for the Buck-Boost Converter
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Fig. 6 Inductor Current for the Buck-Boost
Converter
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Fig. 8. Output Voltage of thc Buck-Boost converter

4.3. Case C : Buck-Boost Converter under Load
Regulation, Adaptive Fuzzy Logic Topology I

In the third test, the adaptive fuzzy-neural-network
controller (fuzzy logic controller and its integration
with the neural-network architecture) of topology-1
is examined for the same system in test case B,
buck-boost converter where the load resistance is
varied from 20 £ to 150 €2 and back to 20£2. Table
| shows the output voltage from the fuzzy and the
adaptive controllers, th¢ output of different
activated fuzzy rules and the weight of differcnt
"neurons at different time steps.

The rules from 1 to 25 and the weights from 1
to 25 are related to the fuzzy-p controller.

E. 206

While the rules from 26-50 and the weights
from 26-50 are related to the fuzzy-I controller.

As it is shown from Table 1, when the fuzzy output
is greater than its reference value, the neural
network has to increase different neuron weights
from their original values “1.0” for the neurons that
has negative output and decrease the weights for the
neurons that has positive output. So, the summation
will be negative, decreasing the duty cycle and so
output voltage will decrease to be closer to the
reference voltage. Such as the cases at t = 2 and 3
ms. However, when the fuzzy output is less than the
reference vollage, the neural networks has to
decrease the weights for the neurons that has the
negative output and increase the weights for the
neurons that has positive output. So, the summation
will be positive that means the neural nctwork will
increase the duty cycle and increasing the output
voltage as well. Such as the case at t = 12 and 13
ms. Figure 9 shows a sample of how the adaptive
fuzzy controller approaches its refercnce value at t=
2 ms,
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Figure 9. Applying the Adaptivc Fuzzy Controlier
for Case A at time, 2 ms.

It is shown from Figure 9 that the initial output
voltage value of “20.8 V", which is the output of the
fuzzy logic controller. By starting training the ANN
by changing the weights of diffcrent neurons of the
last layer, the output voltage is getting closer and
closcr to its reference value(20V) until it
approaches the refercnce at almost 100 training
iterations. At the same time, the error starls from a
valuc of “-0.8” that is the difference between the
reference and the output voltage and reduced
gradually until it approaches the zero at almost 100
training itcrations.

Fig. 10 shows the performance of fuzzy and
adaptive fuzzy controllers. Also, It can be seen from
Fig. 10 that the adaptive fuzzy controller reduces
the ripple in the output voltage. In addition, it
almost brings the output voltage to its reference
valuc most of the time. The maximum tolerance that
the adaptive fuzzy generates occurs at “0.016
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reduction from 0.3333 to 0.25 to keep the output
voltage constant,

second” with a value of “1.304 %” while at the
same pomt the fuzzy logic has a tolerance of

“6.6006 %,
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voltage. While, Figure 12 shows the corresponding
change on the output voltage.
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Figure 11, Input Voltage of the Buck Converter for
Case D

Figures 13 and 14 show a comparison betwcen
using the fuzzy logic and the adaptive fuzzy
controllers for this case in terms of the duty cycle
and the output voltage. It is shown from Figures 13
and 14 that the adaptive fuzzy controller reduces
the ripple in the output voltage as it almost brings
the output voltage to its reference value most of the
time,

The maximum tolerance that the adaptive fuzzy
generates oceurs at “0.016 second” with a value of
“0.254 %" while at the same point the fuzzy logic
has a tolerance of “4%”. It is also shown that when
the input voltage is increased suddenly from 15 V to
20 V, the duty cycle has to compensate by a

Figure 13. Duty Cycle of the Buck Converter for
Case D Using Fuzzy and Adaptive Controller
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for Case D Using Fuzzy and Adaptive Controllers
5. Conclusions

Two adaptive fuzzy logic controliers (AFLC) of the
DC-DC switch mode power converter have been
presented. The proposed two topologies have the
advantage that they cannot only take linguistic
information from human experts but also adapt
themselves using numerical data to achieve better
performance. The main feature of the proposed
AFLC is an on-line learning control architecture,
which deals with a noisy operating environment,
and captures the unknown nonlinear dynamies of
the DC-DC converter. The two controller topologies
considered have been shown to yield satisfactory
performance.



f
Mansoura Engineering Journal, (MEJ), Vol. 30, No. 3, September 2005,

6. Refcrences

[1] J. Foutz, "Switching-Mode Power Supply
Design," Internet Site:
hittp:/fwww.smpstech.com/tutorial/tQ2top.htm,
August 1999.

[2] Y. Liu and P. C. Sen, “A Novel Method to
Achieve Zero- Voltage Regulation in Buck
Converter,” IEEE Trans. Power Electronics, Vol.
10, No. 3, pp. 171-180, May 1995.

[3] B. Arbetter and D. Maksimovic, “Feed-forward
Pulse Width Modulators for Switching Power
Converters,” IEEE Trans. Power Electronics, Vol.
12, No. 2, March 1997

[4] P. Maftavelli, L. Rossetto, et al., “General-
purpose Fuzzy Controller for DC-DC Converters,”
IEEE Trans. Power Electronics, Vol. 12, NO 1,
January 1997.

[5] T Gupta and R. R. Boudreaux, “Impiementation
of a Fuzzy Controller for DC-DC Converters Using
an Inexpensive 8-b Micro-controller,” 1IEEE Trans.
Industrial Electronics, Vol. 44, No. 5, October
1997.

[6] W. So, C. K. Tse, and Y. Lee, “Development of
a Fuzzy Logic Controller for DC/DC Converters:
Design, Computer Simulation, and Experimental
Evaluation,” IEEE Trans. Power Electronics, Vol.
11, No. 1, January 1996.

E.28

[71J. Arias, A. Arias, S. Gomariz, and F. Gumjoan,
“Generating Design Rules For Buck Converter-
Based Fuzzy Controllers,” Proceedings of the IEEE
International Symposium on Circuits and Systems,
Vol. 1, May 12-15, pp. 585-588, 1996.

i8] B. R, Lin, "Fuzzy PWM DC-DC Converter
Control,” Intelligent Engineering Systems through
Artificial Neural Networks, ASME, Vol. 5, No. 12-
15, pp. 587-592, 1995.

[9] J. Principe, N. R. Euliano, W. C. Lefebvre,
Neural and adaptive Systems, New York: John
Wiley & Sons, 2000.

[10] J. S. R. Jang, C. Sun, and E. Mizutani, Neuro-
Fuzzy and Soft Computing, New Jersey: Prentice
Hall, 1997.

[11] D. S. Yeung, E. C. C. Antony, and Y. T.
Cheng, “Fuzzy Production Rule Refinement Using
Multilayer Perceptrons,” Proceedings of the 3rd
IEEE International Conference on Fuzzy Systems,
Orlando, Florida, Vol. 1 pp. 211-217, June 26-29,
1994.

[12) W. Li, “Optimization of Fuzzy Controller
Using Neural Networks,” Proceedings of the 3rd
IEEE International Conference on Fuzzy Systems,
Vol. 1, pp. 223-227, June 26- 29, Orlando, Florida, ,
1994,

Table 1: The output Voltage, Output of Different Fuzzy Rules and Weights of Different

Neurons for Case C of Topology |

Time, ms Output Voltage, Volts Different fuzzy Different neuron
rules O/P (pu) Weights
Fuzzy Adaptive
0-1 20 20 NA
2 20.8 20. R,=-0.1342 w, = 1,4947
R;=-0.0337 w2 = 1.1066
Rz = 0.0265 woe = 0.9231
Ra7 = 0.0951 Wy = 0.7342
3 20.3 20 R,=-0.1286 w,=1.1644
Rz=-0.0314 w,=1.0379
Rzs = 0.0254 wze = 0.9703
R27 = 0.0951 Woz = 0.8932
4-11 20 20 NA
12 19 20 Rs=-0.1027 wg = 0.0009
R;=0.0199 wy;=3.792
Ra; = 0.0203 Wiy = 3.9026
R3;=0.0199 Wi = 3,792
13 19.6 19.8092 Rq=-0.0367 W,;,=0.0043
Ryz=-0.0108 W,,=0.0375
Rag= 0.0072 Wi = 9.0046
R37 =-0.0108 Wa7 = 0.0375
14-20 20 20 NA




