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J-INTEGRAL TEARING MODULUS ANALYSIS FOR

CRACKED PLATES UNDER BIAXIAL BENDING
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ABSTRACT

This paper presents a J - integral - tearing modulus analysis for thick plates containing
uniform through cracks and subjected to biaxial bending stresses. The seclutions are
derived for various crack length ratios and applied stress conditions. They are useful for
predicting stability of crack propagation in plates with limited plasticity in the vicinity of
crack tip. The results are then applied to a carbon steel plate to predict the onset of crack
growth instability. Simitar applications may be made for other materials, plate geometry

and stress conditions.

NOMENCLATURE

a Crack Length
Modulus of Elasticity
Function
Function
Plate Thickness
Crack Path Integral
Stress Intensity Factor

Bending Moment Acting Parallel to Crack
Appited Stress Ratio

Tearing Moedulus
Ts  Tearing Modulus for Plane Stress Condition

Te Tearing Modulus for Plane Strain Condition

f

fy

h

]

K

M,  Bending Moment Acting Normal 1o Crack
M;

Q

T

u Function
W Plate Width
v Poisson's Ratio
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Cp Reference Stress (Fracture Stress)

o) Bending Stress Acting Normal to Crack
T2 Bending Stress Acting Paralle! to Crack
¢ Biaxial Stress Ratio

INTRODUCTION

The problem of predlicting the onset of crack growth ang failure of structures has been
for a few decades, the subject of analytical and experimental . investigalions. Methods
such as the stress intensity factor, the strain energy density, and the J-Integral have been
used to provide sclutions to this problem[i-3]. Recenly, a method combining the J-
Integral and its derivative with respect to the crack size, which is termed the tearing
modulus T, has been developed by Paris et al [4]. The validity of the new method was
proven for several cracked pipes applications {510]. In this method, the onset of crack
growth instabihty may be predicied for a given load-material combination by combining
the computed values of the J-integral and the tearing modulus T with the values of Jand T
obtained experimentally for the material. The method is yet to be verified for other load -

crack-material combinations.

In this paper, the J-T analysis is applied to the problem of cracked plates subjected to
biaxiai bending moments. Such loading condition may be encountered in several
engincering applications such as pressure vessels and turbine blades. The two bending
moments are applied such that an arbitrary biaxial stress state is produced in the plate with
the stress normal to the crack being atways tensile. Depending on the stress parallel to the

crack direction, the biaxial stress ratic may be positive, negative, or zero,

PLATE TEARING MODULUS ANALYSIS

The tearing modujus solutions for biaxial bending stresses applied to a thick plate
containing through thickness crack are derived in this section, Figs-1 & 2. The
derivations are first carried out for the linear el siicity assumptions, which are then
modified for crack tip piastic deformation for applications to small yielding situations.

For convenience, the applied tearing modulus is defined by the following expression

(4] =

il
Tl 0
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Rhomblc plate under biaxin{ bending (G}/O.. ngga.h‘w_)
1

Figure 2
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where o5 a reference stress or flow stress which is vsually taken as the average of the
yield and ultimate tensile strengths of the material. The elastic J-integral is obtained from
the stress intensity factor and is given by:

K2
Jo= = 2
= 2)
where E' = E for plane stress condition
- E_ for plane strain condition
1-v

The tearing modulus for the applied bending moment is derived next. The total
derivative of equation (1) is evaluated for constant bending moment load (load control
condition}. The expression for the stress intensity factor for the crack geometry-loading
condition combination, shown in Fig. {1, 2) by [11), using Muskhehskviii's Methods of

complex potentials, as:

K = o1 Vm 13 vQ. ) (3)
whereQ = 9L | ¢ = 22 4)
a0 o)

The bending stresses normat and parallel to the crack are given by [12]):

6
h2 h<
f(%) = a function for correcting effects of plate width [|13]

140256 (5)- 115252 + 122 ()3 ©

N

& function for correcting effects of yield strength and biaxial stress [ [1].

—

1-0.095(Q)( 9 -1) -0.19 \{1-0.75((1)2(@-1)2 (N

U@

]

The expression f21 the T - integral becomes:

36wr M2 UZ ,
i) SR 0 ) 4437 A2 237202 :
= ()17 +0.256 (¥ - 1152 (¥ +122 ()7 (8)

h E’ w
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The tearing modulus T which is defined by Eqn. (i) becomes:

TeS,d
W GO da
72 M? g PPN
Tolw o W o)
where '
Ay = & A\30 842 Ays/2
fLG) =05 +0.512 () - 2.88 ()7 - 04738 ()7 - 0.737 ()
433 .72 a4
+48.358 (w) +3318 (w} + 15616 (w)
&.9/2 - a a
-35.136 ()°% - 49.19 (;)5 +520.94 ()° (10)
The applied tearing medulus for plane stress condition is:
72 7 M2 P
o T VNG
4]
=6.28 (Q)° U2 () (11
Similarly, the applied tearing modulus for plane strain condition is:
6.28 a
Te = =57 (Q2 26 Q) (12)

In this paper, the analysis is carried out for the following conditions.
(a) Applied Stress Ratio, Q  ranging from0.3t0 0.9

(b) Plate Thickness Ratio, & = 0.3
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{¢) Crack Length Ratio, % from 0.025t0 0.3

(d) Biaxial Stress Ratio, ¢ ranging from - 1.000to -+ 1.00

RESULTS AND DISCUSSION

The J-integral-tearing modulus solutions presented in this paper are valid for plates
containing a uniform through-thickness flaw. The plate is subjected to two out-of-plane
bending momenis. The solutions are presented for various crack lengths and stress
conditions. The solution are useful for predicting stability of crack propagation in plates
with small-scale yielding, whereas it is assumed that plastic deformation is small and
fimited 1o the vicinity of the crack tip. The crack propagation is considered stable as long
as the calculated 12aring modulus is lower than the tearing modulus for the material when

the applied J-integral equals J-integral of the material,

Care must be taken when using these solutions to assure that the combination of crack
size and applied load is such that small scale yielding is valid. Analysis are presented for
various maximum stress 1o failure siress ralios. A screening criterion that defines the limit
of the small scale yielding may be based on the convergence of the plastic zone adjusted
crack length. The adjusted crack length may be calculated as outlined in reference {8).
This adjusting process invelves several iteractions on the crack length. The iterative
calculation is terminated when the value of the crack length resulting from two successive
iterations is within 5 percent of each other. The resulting values of f and T are expected
to be accurate to within 10% of those calculated from the elastic plastic analysis. The
predicted failure stress is then expecled to accurate to within 3 to 6 percent of the elastic-
plastic stress. Such an accuracy is considered acceptable for most engineering

applications.

Figure 3 through 6 show the vanation of the applied J-integral with crack length ratio
for a cracked plate subjected to two out-of plane bending moments which produce a state
of biaxial stress at the crack tips. From these figures, crack instability can be predicted by
comparing the applied J-integral values against the material f-resistance curve. Figures 7
through 10 show the same graphs excepl that the J-integral has been replaced by a
normalized I-iniegrat which is given by the equation |1 (]:
EJ

) n-= o
wGj)

(13
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Figures 11 through 14 show the variation of the applied tearing modulus with crack length
ratio. Such curves may be used, 100, for predicting crack instability. In Figures, 15
through 18, the applied tearing moduius, given by Equation ( 9), versus the normalized J-
integral, given by Equation (13) are shown for various crack length ratios, biaxial stress
ratios, and applied stress ratio. In Fig. 19, the siope of the tearing modulus versus
rormalized J-integral is shown for the previously presented crack size, biaxial stress, and
applied stress ratios. It can be seen that for all values of biadal stress and applied stress
ralips, the slope of T-Jn curves versus a/w coincide, i.e. the slope of T-J wversus a/w curve
is independent of ¢ and Q. It is pointed out that, because of the plate thickness, a plane
strain condition is assumed in computing the quantities presented in all figures. The result
of Figures 7 through 10 or Fig. 19 are used along with the material J- resistance curves or
the material Tearing modulus versus normalized J-integral curves such as that shown in
Fig. 20 in order to assess crack growth stability. For a specified crack length, a/w. Fig. 19
gives the slope of the applied T-Jn curve. This slope is then drawn on Fig. 20 to
determine whether an intersection with the material T-3n curve can be found.

As an example, for a/'w of 0.2, Fig. 19 gives an applied T-Jn slope of 1.9 at all values of
and Q. At this stope, Fig. 20 gives a critical tearing modulus T of 2.2,

HON—DIMENSIONAL J—INTEGRAL

¢
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According to the present method, stable crack growth is expect-
ed as long as the applied loadings are such that the applied tearing
modulus T, calculated from Equation ( ¢ ), is below the critical value

(2.2 in this example).

This proczdure may be conveniently followed; provided the male-
rial's T-Jn curve, such as that shown in Fig. 20 for 4130 steel, is
known, Such a curve can be obtained experimentally in the same

manner the material's stress-strain curve is obtained.
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