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ABSTRACT:

This paper presents a numerical solution procedure for the
prediction of the flow pattern created hnder a stationary
hovercraft using the irxctational flow model. A finite difference
computer program using a rectangular grid was employed in this
study. Three flow patterns are investigated. These flow patterns
are the flow pattern at constant mass flow rate M, flow pattern at
constant skirt height Ygap and the flow pattern at constant mean
pressure along the underside of the hovercraft floeor. It, also,

"determines the dependence of the pressure distribution on the
relative height of the skirt and the mass flow rate. The relation
between the mass flow rate and the skirt height, at constant
average pressure along the underside of the hovercraft, was also
obtained. The results show that the flow pattern changes with the
variation the the skirt height, while there is no change in the
flow pattern with the increase of the mass flow rate, if the skirt
height is kept constant. If also explains the practical limitation
of the unability of a hovercraft to operate over very rough seas.
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1. INTRODUCTION:

Since the 1950's, the Air Cushion Vehicle ACY or hovercraft,
has seen widespread commercial application to the transport of
people and vehicles over water, land and ice. Craft are being
designed and built for the Army and Navy to carry military
payloads from offshore across the beach. Operations have been, and
are being, carried out in support of oil and gas exploration and
production. The increasing awareness of damage +to marshes and
tundra by the cutting of canals, or by wheeled or tracked vehicles
might suggest a more widespread application for the ACV. Cutt [1]
described some existing craft deployments and discussed the Xey
factors that would enhance or 1limit the role of the &ACV in
exploration and production of oil and gas.

During operation overwater, hovercraft have been observed to
undergo viclent self-excited heave oscillations. The hovercraft
overwater heave stability was studied by some investigators [2-5].
They identified two potential sources for oscillations. One is a
Kelvin-Helmholtz type flutter of the air water interface directly
pengath the skirt caused by high speed leakage airflow. The other
is a modulation of leakage air flow by complex standing wave
directly beneath the craft and its skirts. Experiments and theory
show that the flutter mechanism is most active when a craft is
equipped with a segment skirt while the standing wave mechanism
can be a problem for craft with jupe or cell skirts.

Abulnaga, B. E. [6] reviewed the concept of air propelled
vehicles to +travel in deserts. He presented an analysis of
trafficability problems in Egyptian deserts, with emphasis on sand
surfaces. He derived theoretical equations for the prediction of
the acceleration and resistance to motion at constant speed and
applied them for the French Army's Aero-Roue and the British
Brmy's hovercraft when they operate over sand.

Eroshin et al [7] determined experimentally the pressure on
the surface of a disk entering a compressible fluid at an angle to
the free surface. The results obtained can be used for designing
the structural elements of hovercrafts, water-displacing vessels
and hydrofoils.

This paper is interested with the prediction of the flow
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pattern beneath a stationary hovercraft using a finite difference
solver. The governing equations were derived and implemented into
the computer program. The relation between the mass flow rate,
skirts gap height and the average pressure along the underside of
the hovercraft floor are presented. .

2.NATURE OF THE FLOW:

Hovercraft are amphibious wvehicles which float on a cushion of
pressurized air contained by a flexible structure known as a
skirt. Lift air is typically supplied by one or more fans and it
leaks away to atmosphere through a gap beneath the skirt.

The flow configuration examined in this paper is shown in
figure (1), which represents an idealization of that created under
ar Air Cushion Vehicle ACV or a stationary hovercraft.
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Figure (1) Flow configuration for a stationary hovercraft

paper so that the flow can be treated as two-dimensional. Air and
combustion preducts from the turbines of the hovercraft are
admitted through the slot in the reoof of the support structure and
escape between the lower edge of the skirts and the ground. The
ratio w:A is kept here fixed at S:1 which is fairly representative
of practical gecometries. The slot in the roof Xgap ig kept
constant and equal to 0.3 w or 1.5 m wide. The height <f the skirt
gap ygap is a wvariable and is taken as a ratio of the total height
(0.1 h, 0.3 h and 0.5 h) or 0.1 m, 0.3 m,.0.5 m hignh.
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2.1.GOVERNIND EQUATIONS:

In some types of fluid flow the effects of viscous shear are
negligible. The neglection of the viscous terms greatly simplifies
the aim of solving the eguations of motion. For a uniform-density,
two dimensional, axisymmetric non-—-viscous fluid flow; the
egquations of motion may be written as (8]:

w- momentum equation:

d u & u 8 u 1 & p
—_— U —— YV — = = = — {1)
&t & x 8 r P o x
w— momentum egquation:
& v d v d v 1 & p
— + U — VYV — == — (2)
8t 8 x o r P &
continuity eguation:
& ru éd rv
+ = 0 (3)
& x & r

It is obvious, that the eguations of motion £for plane two
dimensional flows can be derived form the above egquations by
replacing » by 1 and &r by &vy.

The distribution of the two velocity components w, v as well
as the pressure field p can be cbtained by solving the three
above equations simultaneously. It 1is wuseful to eliminate the
pressure from the two momentum equations by the combination of
equations {1) and (2); this is can be done by subtracting the
x-derivative of equation (2) from the r-derivative of equation
{ly. The result may be expressed as:

D w d rw a &

= + {ruw) + — (ruw} =0 ..... {4)
Dt &t & x & r
8 u d v

where « = fluid vorticity =

T
1
I
<]
w

According to equation (4), the vorticity of any fluid element
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remains constant. That means if a fluid started from rest, where
its vorticity is initially equal to zero everywhere, it will
remain zero at all subseguent times.

Inviscid flows, in which the vorticity is everywhere zero,
are termed irrotational. For such flows the wvelocity field is
determined from the solution the two partial differential

equations given by the continuity equation (3) and the requirement
that w = 0 {.e.:

-
I

d v

- — =90

r g x

|

L)

Introducing the two dimensional scalar function known as the

stream function ¢ (x,r), defined as (in cylindrical coordinates):

& w a

— = pru and — =PIV e .- {7}
r d x

in which lines of constant v are streamlines. The spacing between
the streamlines is inversely proportional to the local velocity as
may be seen from the above equation. Moreover, the velocities
associated with the ¢ (x,r) field satisfy from the continuity
equation (3). It may be confirmed by substituting eguations (7)
into equation ({33%.

Substitution of eguaticns ({7) into the irrotationality
equation (6) leads to the important result that, In cylindrical

coordinates:
& 1 d y & 1 d w
{_ } + —_— - } =0 ..... (8
8 x r & x a8 r xr a&r

This is what is called the irrotational flow model.

A further important property of irrotational flows may be
obtained by multiplying equation (1) by w and addirg it teo
equation {2) multiplied by v. For steady flow the result may be
written as

& 8

—_— {rupt} + — (rvpt} =0 i {2)
8 x a r
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where p denotes for the "total™ pressure of the fluid i.e.

p=p t+p (W72 + v*/2) = constant  ........... (10)

which is known as "Bernoulli's eguation”. It states that the total
pressure is constant along any Streamline or vortex line (9],
therefore, in the present case it is constant everywhere in the
fluid.

Comparing these egquation (8) with the general form of the
heat transfer eguation solved by the finite-difference computer
program TEACH-C [10]), which describes the distribution of the
" temperature T in a stationary medium of density p,

g T g

a T a 8T
e C r - {h r } - {k r } —rs = {11)
Y 8¢t 3 x a x 3y &y

where c, gpecific heat, ¢ time, k thermal conductivity and s
distributed socurces or sinks of energy.

It is obvious that, equation (8) fits within framework of the
above equation (11), with yw replaced by T, aT/8t and s are both
set equal to zero, 8r = &y and k is set egual to 1/r*. Therefore
irrotational flows can be calculated by thue same program.

2.2.BCUNDARY AND INITIAL CONDITIONS:

The symmetry of flow allows the calculations to be limited ¢to
the half of the hovercraft cross-section, as illustrated in figure
{(1). Calculations are performed in the rectangular region bounded
by the vertical right-hand wall, the herizontal wupper wall, the
axis of symmetry in the left-hand side and the ground in the lower
side. A uniform vertical wvelocity v 1is prescribed across the
horizontal plane through the horizontal gap x - and a uniform
horizontal velocity w is set along the vertical plane through the
vertical gap ygap. These specifications lead to the boundary
values of the stream function y for this domain, indicated in
figure (1), using equation (7} and the fact that there is no flow
through the walls, the ground or the axis of symmetry.

For the parallel flow at inlet through the roof gap xécp, all
the flow is in y-direction and there is no flow through the axis of
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symmetry. Therefore, egquation (7) takes the form:

d y L]
u=pg—=20 " and u=-p

€

|

@
L
<o
X

The u velocity. component states thHat the stream function y 1is
a constant or.function of x, €£{x), only while the v velocity
component indicates that the stream function eguals to w = -~ wux.
Combining the +the two statements together, the total stream
function for this part of the flow is

= - u
v, x

At the axis of symmetry, x = 0, so yw = Q while at the top wall

X = xgap = 1.5, therefore the stream function will be

¥, = e (12)

For the parallel flow at outlet through the skirt height ygap,
all the flow is in x-direction and this is no flow through the
greund. Therefore, equation (7) beccmes:

4y 8y
u =g — and v=~p—=20
4y 4 x
Employing the same procedure, mentioned above, the total
stream function for part of flow is

, T MY e, {13)

At the ground level, y = 0, the stream function will be y =0
witile at the right-hand side wall it takes the formy = u ygap.
The skirt height ygap changes form one case to another so the the
stream function vy depends on the wvalues of the u velocity

component and skirt height yga{

2.3.GRID SIZE AND NUMBER OF ITERATIONS:

Uniform grid spacing is used in the calculation procedure, as
indicated in figure (2). Twelve nodes are empleyed in hoth the
horizontal and vertical directions (NI = WJ = 12). The height of
the skirt gap ygup is specified through the index JGAP, the height
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is being (Y (JGAP)+Y{JGAP+1))/2, as shown in figure (2). JGAP takes
the values 2, 4 and é in order to obtain the the wvarious skirt
heights employed in this study which are 0.1, 0.3 and 0.5 of the
total height. The width of the roof slot of the support structure
xgap was specified form the index IGAP, the width equals to
(X(IGAPY+X (IGAP+1))/2. IGAP is kept constant and equals to 4 that
corresponds to 1.5 m wide.

Changing the grid size to 22 nodes in both the horizontal and
vertical directions (NI = NJ = 22), does not affect the accuracy
of the solution. )

Ten iterations were employed in this investigation, After
eight iterations only. a converging solution was obtained.
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Figure {2) The numerical mesh employed in the calculations

3.CALCULATION ALGORITHM:

An algebraic, finite~difference counterpart of the
differential eguation " ({8) is derived for the representative
cluster of grid nodes shown in figure (2). The procedure was made
as follows: firstly equation (8) was integrated, as far as formal
calculus allows, over the control volume surrounding P and
simultaneously averaged over a finite increment of time &t; then
the remaining integrals will be replaced by algebraic
approximations (11]. This transfers the partial differential
equation (pde) (8) into an algebraic equation.

Such equation can be written for each interior cell,
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Yielding a set of simultaneous algebraic equations, whose number
equals to the number of unknown stream functions. The aim now 1is
to solve these simultaneous eguations.

In that program, a combination of iteration by lineg and block
adjustments is used. The aim is' to achieve computational
efficiency without excessive complication and computer storage.

The line iteration procedure involves simultanecus solution for
the stream functions along each grid 1line, while the stream
functions along neighboring lines are temporarily taken as known
stream functfions. The simultaneous solution 1is achieved by a
particuiar form of Gaussian elimination known as "Thomas
Algorithm” {12], or "tri-Diagonal Matrix Algorithm” (TDMAY. This
procedure is applied along north-south grid lines, starting at the
westmost one and sweeping eastwards.

The action of the line iterative procedure is to sweep the
errors in the prevailing solution of the stream function field to
the boundaries, were they are reduced ¢r eliminated by the
boundary conditions. The errors are not reduced to zerec in just
one iteration. That is revealed by consideration of the residual
sources RP of the finite-difference eguations [13].

The Rp's for the cells must ideally be zero, if the prevailing
stream function field were without errors which c¢an be achieved by
the application of the TDMA to a grid line.

Unforfunately there are some circumstances in which the rate
of reduction of the R 'S by the line-iteration procedure becomes
unacceptably slow, This may happened when the resistance to the
mass flow rate at the boundaries is large. Since it is the changes
in boundary mass flow which effectively remove the errors, the
effect of high resistance is to cause them to Dbe reflected Dback
intc the interior field; without significant reduction.

An effective solution for this problem is to use a procedure
which, by simultaneously adiusting the stream functions on each
line by uniform increments for each 1line (the value of the
increment varying from line to another} causes the RP's to sum to
zero along every line, and hence over the entire field. This
procedure is kunown as the block adjustmeni procedure, the details
of the procedure is clear in [14].
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3.1.50LUTION PROCEDURE:

The solution procedure starts from the initial distribution of
the stream function y at time t = by The initial distribution
consists of the boundary condition values setted according to the
mass flow rate and other node values which are assumed to be zero,
Then the procedure advances to the next time level t = t,* &t. For
steady state condition, such as the case in question, only just
one time step with &t effectively set egual to infinity can be
performed. The procedure first evaluates the coefficients of the
partial differential equations (pde) basing them on the prevailing
stream functions as an initial estimate. Then, the stream
functions are updated by first performing a line-iteration sweep
and then making the block adjustments. The result so obtained is
examined for satisfactoriness, by checking if the residual-source
s5um Rp is sufficiently small. If it is unsatisfactory, the cycle
is repeated from coefficients calculation stage, until an
acceptable solution is o¢obtained. This provides the stream function
field.

In practice, the quantities of interest are the velocity
components v and v, and the pressure field p. Arrangements are
therefore made in the program to calculate these guantities once a
converged sclution has been obtained for the stream function,
Having the stream function v, finite difference versions of
equation (7) are used in the program to calculate the values of u
and v. Then, equation {10) was applied to obtain the values of the
presgsure field p, imposing the condition that -3 is wuniform over
the flow field.

4 . RESULTS AND DISCUSSION:

Calculations are performed for the case of uniform inlet and
outlet velocities. Firstly, three cases are investigated varying
the skirt gap ygqp from 0.1k to 0.3h to 0.5k, while the mass flow
rate is kept constant. The inlet velocity v was kept constant at
0.667 m/s that corresponds to a stream function w = 1.0, equation
(12), at both the top wall and right-hand side wall of the
solution domain. The correspoanding outlet velocities u for these
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cases are 10 m/s, 3.33 m/s and 2 wm/s respectively, according to
eguation (13) &nd the continuity equation. The stream lines (¢ =
constant) are pleotted in figures (3 to 5). These figures show that
the stream lines become more denise as they approach the exit of
the air cushion. The flow pattern looks 1like that one obtained
from the flow of a real fluid around a corner. Figure (6) shows
the variation of the average pressure, P, along the underside of
the hovercraft floor, top wall of the solution domain, and the
skirt height Ygup. It indicates that the mean pressure, P,
decreases as the skirt height increases. This is also expected
because Bernoulli's equation ({10) states that the total pressurs
P is urniform over the flow field and as the skirt height ¥ op ig
reduced the exit velocity w increases to maintain the flow rate
constant, that makes the total pressure at the scolution domain
increases as well,

In figures (7 to 9), the skirt height Ygap was kept constant
at 0.3 of the +total height H, while the inlet velocity w
increases. Three inlet velocities are employed in these cases
namely 1.33 m/s, 2 m/s and 2.67 m/s that corresponds to mass flow

rates (per unit length of the soclution domain) ﬁ = 2 kag/s, 3 kg/s
and 4 kg/s respectively. The flow pattern show no significant
change in the general shape except that the wvalue of of each
stream line has in new value according to the total mass flow
rate. The mean pressure along the underside of the hovercraft
floor and the mass flow rate for censtant skirt gap Y ap 0.3 H
is plotted in figure (10). It indicates that the increase in the
mass flow rate corfesponds to an increase in the average pressure.
The relation between them is a straight line when it is plotted in
log-log axis, as shown in the figure (10). This behavior is
expected for a real fluid flow since Beraoulli's eguation 1is
governing the relation between the pressure and the inlet velocity
angd, consequently, it controls the relation between pressure and
the mass flow rate.

Further runs are made, for some largest gaps qup = 0.2 H, 0.3
H, 0.4 H and 0.5 H; in which the inlet velocity was adjusted until
the average pressure along the underside of the hovercraft floor
is approximately the same as that pressure (P = 34.7 kp/sz)
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obtained form the smallest skirt height (0.1 H). The relation
between the mass flow rate and skirt height for that constant
pressure 1s represented in figure (11). It shows that relation 1is
a straight line that means as the skirt height increases the mass
flow rate must increase to maintain the mean pressure underside
the hovercraft floor constant.

The pressure distribution adjacent to the top wall i5
represented in figure (12). The pressure has it minimum value at
the nodes which are adjacent to the entrance where the inlet
velocity has its maximum value then the pressure increases
gradually until it reaches its maximum value at the right~-hand
corner where the velocity is almost zero.

This study may explain the practical limitation of the use of
a hovercraft with the roughness of the ground or the water over
which the craft must travel. The more rough is the suxrface, the
larger in average, will be the gap under the hovercraft skirts

gap” As a result, the amount of air (ﬁ) required to "cushion" the

craft is greater. There is of ccurse a limit to the air supply
that the craft's turbines can provide. Therefore, the craft (for
example) is unable to operate over very rough seas.

5~CONCLUSIONS:

The employment of the irrotational flow model in investigating
the flow pattern under a stationary hovercraft, at a constant mass
flow rate, reveals that the flow pattern changes with the change
of the relative height of the shirt (YgaP/H), specially near the
exit of the flow. While there is no change in the flow pattern
with the increase of the mass flow rate if the skirt height is
kept constant. The study of the mean pressure along the underside
of the hovercraft floor indicated that the pressure decreases with
the increase éf the of the skirt height, if mass flow rate 1is
maintained ceonstant. For constant skirt height, the pressure
increases with the increase ¢f the mass flow rate. The variation
of the mass flow rate with the skirt height, while keeping the
average pressure along the underside of the hovercraft constant at
a certain value, show that the mass flow rate increases linearly
with the skirt height. All these parameters can be enployed to

=le}
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the
{required to deliver a certain mass flow rate) and

hovercraft
the

turbines
roughness

of the ground or water over which the hovercraft will travel.

& . NOMENCLATURE:

IGAP

&
- [
=
o

Ww s v e xX-x

[« « T B
o~

= X = c

gap

gap

D E € =K

Constant-volume specific heat capacity.

Height of the solution domain.

Index for slot in the roof of hovercraft.

Index for height of the skirt gap.
Thermal conductivity.

Mass flow rate.

Static pressure.

Total pressure.

Radial coordinate in a cylindrical-polar frame.

Energy source.

Time.

Temperature.

Time increment.

Longitudinal velocity component.
Tangential velocity component.
Width of the solution domain.
Longitudinal cartesian coordinate.
Half-width of the slot in the roof.
Tangential cartesian coordinate.
Skirt gap height.

Stream function. .

Vorticity of the fluid.

Density.
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