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ABSTRACT

Large spans have always fascinated archivtects and engineers. Domes
provide an easy and economic method of roofing Large areas and are used
frequently by the designers who realize the advantages and the impressive
beauty of this form of construction.

Domes are of special interest to engineers and architects as they enclose a
maximum amount of space with a minimum surface and have proved to be very
economic in the consumption of constructional materials. Domes are also
exceptionally suitable for covering sports stadia, assembly halls,
exhibition centers, swimming pocls, shopping arcades, and industrial
building in which large uncbstructed areas are essential and where minimum
interference from 1internal supports is required. The provision of
unobstructed Sight-Lines for large opumbers of people is the primaty
requirement in sports halls and can easily be satisfied through the adoption
of a domic shape. In this paper The exact and approximate methods of
analysis of domes are discussed.

1. INTRODUCTICN

A braced dome may be defined as a skeletal structure whose geometric form
is a part of a sphere and which is fabricated from members. Before any
engineering Structure can be analyzed, it has to be represented by an
idealized mathematical structure whose behaviour is sufficiently close to
that of the original! engineering structure. The idealizations available for
braced dome structures fall into two distinct groups: the equivalent sheil
methods and the discrete structure methods.

The equivalent shell methods fall Ln turn into two sub-groups.

In the first sub-group, the analyst uses orthopedic shell theory.The
orthotropic shell stiffness which occur in the theory are replaced by
equivalent shell stiffness. These are calculated using approximations which
aim to smear the effect of the discrete members unifermly over the surface
of the equivalent shell.

In the second sub-group, difference expressions are set up by considering
the stiffness of individual! members. finite difference theory is then used
in reverse to derive the governing differential equations of the equivalent
shell from the difference equations.

All the equivalent shell methods lead to & set of governing differencial
equations. There are normally solved using a harmonic solution, but a
conventional finite difference solution could be used or a finite elemenc
solution or evem an equivalent skeletal structure.

In the second group of methods, the analyst rtackles the discrete
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structure divectly. Within this group it is still necessary to select one of
severzl possible idealizations. The principal choice is between a space
truss analysis and a space framwe analysis. There are also various non-linear
effects which can and sometimes must be considered.The discrete structure
mechods led to a large set of simultaneous equations which can only be
solved with the help ¢f a computer.

The equivalent shell methods are best used in the early design stages and
for structures which are too large to be analyzed as discrete structures., As
computers become cheaper, the use of equivalent shell methods will certainly
decrease.

2- BRACED DOME BEHAVIOUR

& shell dome resists loads with a force system acting in the surface of
the shell. Tipically, cthere will be a principal compressive force acting
vertically in the surface of the dowe and a lesser horizontal force (usually
tengile ) acting around the dome, as shown in Fig. (1}.

Fig{1} Major stresses tn a shell dome

The way a braced dome works depends on the configuration of the members.
Braced domes which are fully triangulared, such as the dome in Fig. {2-a),
will have a high stiffness in all directions in the surface of cthe dome.
These configurations are also kinematically stable (no mechanisms) when
idealized as a space truss. Accordingly, the forces in a fully triangulated
dome will be principally axial and will have direction and magnitude similar
o those in a shell dome.

A dome which is not fully triangulared 1s kinematically unstable when
idealized as a ctruss and may also have widely different stiffness in
different directions in the surface of the dome. The dome shown in Fig.
{2-b) can only support loads by developing bending moments in the members
and joints, The dome shown in Fig.(2-¢) will require continues joints or
structural cladding te give the dome stability and ©o  resist
non-axisymmetric Loading.

Fig{2Z) Arrangement of hracing

3. ANALYSIS OF BRACED DOMES.

Analyses of braced domes can be divided into linear and non-linear. A
simple linear elastic analysis in association with suitable permissible
stresses can check for all types of local member {or joint) failure. These
inciude yield, member buckling, fracture, farigue and sliding at joints.The
first yield load is also a lower bound on the shakedown lead. However, to



Mansoura Engineering Journal (MEJ),Vol.18.M0. &, Dec. 1993, C. 15

check for instabilicy effects involving more than one member or geometry
change and also to exploit any post first yield strength that wmight be
available in the structcure, the designer must include non-linear effecrs in
the analysis.

Non-linear effects can be divided into member effects such as plastic
yielding and geometric effects.

Methods of non-linear analysis can be divided intc three approaches.

The first is the plastic mechanism approach, which is not really
applicable to braced domes.
The second is the stability approach, which inveolves the location of

bifurcation points in a perfect structure. This appreach can
accommodate geometric but not member non-linearities.

The third is the incremental approach. In this approach, the load is
applied in small increments. At each increment, the stiffness of
the structure is re-calculated to accommodate changes in member
stiffness, structure geometry, indeed all relevant non-linear
phenomena. The structure is normally given assumed initial
deformations and  locked-in  stresses to give a  more
representative analysis. Member non-linearities are accommodated
by assuming a stress dependant member stiffness. The easiest ro
program is the elastic perfectly plastic case, where the member
stiffness simply changes ¢to zere. An improvement is the
non-lingar elascic case, which can model the falling force in a
buckled member. Further sophistication can be obtained by
modeling elasto-plastic flow wusing a yield c¢riteria and flow
rule containing the member stress resultancs. Finally, the
member can be subdivided into layers. Komatsu and Sakimoto[2]
have produced stiffness for partially yielded closed secctions,
but generally there is need for further research in this area.

Geometric non-linearities can be crxitical in braced domes; in particular,
with shallow or unevenly loaded domes, it may be essential to check for
snap-through buckling. GCeometric non-linearity will be covered later on
other paper

For many braced domes a space truss idealization will be sufficient. A
space truss analysis c¢an incorporate both member and geometric
non-linearity. A full space frame analysis is only required for structures
which have a significant bending action, such as non-triangulated domes,
domes with concinuous curved members and possibly same wvery shallow
single-layer domes.

4- THE STIFFNESS METUOD.

The stiffness merhod is usually used to anmalyze a structure which is an
arbitrary assembly of simple structural members. The stiffness method is
sometimes referred to as the displacement method There is a second method
for tackliang the same problem called the flexibility or force method, but
this later method is not widely used

Consider the simple elastic bar shown in Fig.(3). The bar has stiffness
k=EA/L, end forces P, and P, and end displacements d1 and d2

Fig.13) End [orces and displacements
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The end forces can be expressed as a linear combination of the end
displacements as follows;

kd - kd, = p, , ~kd + kd, = p, v

The analysis requires a large amount of linear algebraic manipulation and
the most suitable branch of mathematics for representing such manipulations
is matrix algebra. In addition to being ideally suited to computer
implementation,

If the displacement at one end and either a force or the displacement
at the other end are kmown, then the set of Egns. (1) <¢an be used to
caleulate the remaining forces and displacements.

Therefor convenience, set of Eqns. (1) can be expressed in matrix form as
follows,

_ P
K - it _ | or K.d =P (2)
-k K| |a P,
where ; K is the member stiffness matrix

]

d 2nd p are the member displacement and force vector.

it is obvious that the stiffness merthod can be used te penerate a
stiffness matrix for an arbitrary assembly of Simple members. Consider for
example, the structure shown iIn Fig.(4). The stiffness matrix for the
complete structure Ls constructed such that the first row is the equilibrium
equation for the first Joint and so on for all rows.

4dsds944 )
[ e ——— A P,
__i?g L ]z;r:::::::::::i}é

o N

] ' d d ]
I : o .
X ds
Fig.14 ) An assembly of bar elements

The equations can be expressed as a simple makrix equation;

Ka+ ¥ -Ka - Kb o d1 P,
-Ka Ka + Kc - Ke 0 d2 _ pz (3)
-Eb -Ke Kb + Ke + Kd -Kd dz Py
o o - Kd ] da P,

Inspection of Eq.(3) shows that the contents of the member stiffness
matrices are added to the structure stiffness matrix in positions which
correspond te the location of the member in the physical structure. For
example, member B comnects jJoint 1 te joint 3 and accordingly the contents
of member stiffness K can be found in the first and thitd rows and columns

of the structure stiffness matzix.
Afrer the structure srtiffmess matrix has been assembled, some sort of
solution procedure such as computer program can be used to evaluate che

unknown displacements and forces after the known displacements and forces
have been specified.

4.]1.FORM STIFFNESS MATRIX OF A STRUCTURE

The first step towards forming the structure stiffness matrix is to form
the primary stiffness watrix. This is composed of member stiffness
submatrices, of which rthere are four per member. These submatrices
KH,KQ,K21 and K}z relate the forces applied rto the ends of the member to
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the displacements of those ends. K” and Kzz are known as the direct

stiffness submatrices, as they relate the forces and displacements at the
same end of a member. Kﬁand Km are known as the cross stiffness

submatrices, as they relate the forces applied to one end of a member to the
resulting displacements at the other end. The derivation of the terms in
these matrices will not be discussed here, as rthey are readily available
from the many texts that now exist on rthe subject of matrix methods of
structural analysis [4,5,6,7,9]. The ©rterms of the member stiffness
submatrices are; for a typical member b

[ Ea /1 0 0 \ 0 0 0 |
b b .
0 12ET /L 0 ) 0 6ET /L
h b 1 b
|
30 2
0 0 LEL /L ) 0 6EI /L, 0
|
K'.‘.h T I, (4
0 0 0 NN 0 0
b
2
0 0 -6ET_ /L, | 0 4EL /L 0
i
2z
i 0 6E1 /L, 0 o9 0 4EI_ /L,
_ | .
EA /L, 0 0 A 0 0
|
0 1281 /L3 0 g 0 -681 /L2
b’ T : :h/ B
3 ! 2
0 0 12E1 /L 0 6EL /L. 0
R = ’ (5)
220 )
0 0 0 :CJb/Lb 0 )
2 I
0 0 61 /L. D GEI /L0
|
2
- i
! 0 6EL_ /L. 0 | 0 0 azzzb/LbJ
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- .
-EA /L 0 0 Lo 0 0
b b |
3 ] 2
0 -lZEIzb/Lh 0 . 0 0 GEIzb/Lb
34 2
¢ - 0 v -12ET /L, 1 0 6EIYb/Lb 0
52b |
! (6)
K = |
21k 0 Q 0 | ~GJb/Lh 0 0
2 I
] 0 BEbe/Lb | 0 2E]’.yh/Lb 0
!
2 '
0 -GEI“’/Lb 0 . 0 o ZEbe/Lh
where
E = modulus of aelasticity G = modulus of rigidity
L = Length of the member A = Cross sectional area
Ir = maximum principal second moment of area
I = minimum principal second moment of area
J = rorsion constant of the cross-section of the member
and G = —— where v ls poission’s ratio
Z{iey)

These matrices are formed with respect %o the member coordinate system,
to which the following assumpticons apply:

a) The number allocated to joint 1 1s always swmaller than that of joint j
b) The member is of uniform c¢ross~section

¢) The member axis 0-X . Fig (5), is passing through the centroid of the

cross-section, with its positive direction from i to ]

d) The axes Om-Yland 0, -2, are along cthe principal axes of the second

moments of area of the cross-section such that the second moment of area
about O-Y is the maximum
m m

e) The positive directions of Ou-Ymand 0 _-Z are such that 0. -X -Y Zuis a
o L] m
right-handed cartesian coordinate system and that the projection of 0 -2
L] m
on Oo-zg(global axis, Fig.(6)) is always positive

Pig.t 51 Sign convention for right-handed Carlesian coordinate systetns
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The four member stiffness submatrices have been shown partitioned into
submatrices of order 3, and computer time can be saved by evaluatimg only
the required submatrices K; KE, Kcand KD

X (T [ K -k -K‘ Kz
4 [ I a [+ 1
T R *a2 7| 2" % T
4 K ‘ -K [4 X 4
[+ i) L 4 B . € B
(8) (9} {10)
Where, for a typical member b,
rmb ] ¢y 0 0
i 4] 0 Lb
b
12E12 &EI?
K= | 0 —" 0 an oz o= 0 ~ 0 1)
b L b b
b
o 0 leIr 4EI2
3 0 0 b
L L
I o B b
Q Q 4] -Ei, o 0 W
Ly
0 0 L 0 2EL 0
K, = 2 (13) K, = T (14)
b b d b
6ET -
0 20 0 0 2L,
L J L
| b B b

Another right-handed cartesian coordinate system OQ-XD-YQ-Z 1s the
9

coordinate system for the whole structure and is refecred to as the global
coordinate system. Before the member stiffness submatrices can be assembled
to form the primary stiffness matrix, they must be transformed such that
they are all in rerms of the global cocrdinate system as opposed to being in
their own member coordinate systems. This is done by carrying out the
following linear transformations.

a) THE MEMBER IS NON-VERTICAL WITH RESPECT TO THE GLOBAL COORDINATE SYSTEM

for this case, an addivional right-handed cartesian coordinate system,

The auxialiary co-ordinate system O,-X -Y -2 musc be introduced and 15

constructed such that Om-Xm and Oa-X.are coincident and Oa-Ya is parallel to
L

the Og-XB-nglane as shown in fig.(6) The angle between Om-Ym and Oa-Y,,

angle & 1is measured Irom 0-Y to 0 -Y and is positive 1f it drives a

right-handed screw along the positive direction of O -X .
m

m
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Iy

A

"]
D.

Q-1 asis paralicl to O_-X -¥  plang

(no auriliary goordinate systen)

on-'fm asis npt parsllel o 0 -X -Y_ plang

Ruxiiiary Gd-'la aais peraliel Lo Oq-lg-\'q plane

1
Uq q

Fig. (&) Global and member coordinate systems (non-vertical members)

A transformacion matrix of order 3, matrix R, is used to transform each
of the four submatrices of order 3 of the member stiffness submatrices from
the member coordinate system to the auxiliary coordinate system

1 ¢ Q
R=1]0 cos a sin a (15)
0 -sin @ cos a

The transformation from the auxiliary to the global coordinate system

will now be considered. Again a transformation macrix of order 3, matrix P,
is used

a -bd -acd
P = b ad -bcd (16)
c 0 1/d
xﬁl - xoi ygj - Ynl (18)
a = — (173 h = —
L L
Where;
91 - 1 =
c = —_— (19} d = ——M8M8 — {20)
L az + b!

These being the components of a unit wvector along Om-xm (and Oa'x.)

relative te the global coordinate system. x I S y] oz and =z
9i g q ¢ j
are the coordinates of member ends i and ) relative to the global coordinate

system and L is the length of the member

Lecting A be any sub-matrix of order 3} of the member
Submatrices,

system 1§

stiffness
the required transformation from member to global coordinate

A - PR.A.R P (21)
o L}
but since both transformation matrices F and R are orthogenal matrices,
the transformation ¢an be written as;
A - P.R.A.R.P (22)
g m

It should be noted that if angle @ =0, R =1 , a unit mactrix, and the



Mansoura Engineering Journal {MEJ),Vol.18.No. 4, Dec. 1993, c. 21

transformation can be simplified to
A =P.A P (23)
-] »
If the member ij is parallel with O -X , P = I, a unit matrix, and the
-] ]
transformation can be simplified to;
A =TR.A.R (26)
[+] m
If both P and R are unit matrices, no transformation is required, i.e,
A = A (23)
g ]
b) TUFE MEMBER IS VERTICAL WITH RESPECT TO TEBE GLOBAL COORDINATE SYSTEM

Foxr this case, the wvalues of the terms, a, b, ¢ and d in Egns.(l6) to
{20y will be a = b =0, ¢ = * 1 and & = =, therefore the matrix P is not
defined . To obtain an equivalent matrix, an angle £ has to be introduced ,
as shown in Fig (7). f is the angle between the positive directions of Ou-xo

and O -y and is positive if it drives a rightv-handed screw along On-zu' The
m m

transformation macrix P then becomes

+

0 cos f3 -¢ s5in g8
P = 0 sin § c cos f8 (26}
c 0 0
The required transformation on any submatrix A of order 3 is then
A= P.A.P (27)
[} m
Ig 04 %y parallel ta Clg-zg "n
both gases.

| membe member

|
|
SN || "2

n
0. -7, parsllel to OgAIq

" el -
nrn Em paraliel to DG Yg

a_ £

3

Fig.{7) Global and member coordinate systems {vertical members)

Once these transformations have been carvied out on the member stiffness
submatrices. they can be assembled to form the primary stiffness matrix X
For any memb®%r b, the position of the member stiffness is shown in Fig (8)
and, for a kypical structure, the assembly of the whole primary stiffness
matrix is shown in Fig(9).

It should be remembesred that; for a computer program, as the program
stores only the lower diagonal portion of the matrix, only KN and the lower
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diagonal submatrices

stiffness matrix.
The primarcy

of K”and Kzz

stiffness matrix K must

nead

be

planted

into the primary

now be modified to produce the
structure stiffness matrix K, which involves the implementation of
constraint conditions.If, however, any of the constrained joints are

nonconformable, i.e.,

the joint coovdinate system does not correspond with

the global coordinate system, a further linear transformation is required. A

joint coordinate system is constructed which 1s again a right-handed

cartesian coordinate system. In the computer program, zllowance is made for

rotation of X an Y axes about the znaxes, i.e the herizontal joint
n n

coordinate axes may be rotated about the vertical axis.

The angle between Og-Kuand On-Xn, angle v in Fig (10), is measured from

0 -X to 0 -X and is positive
9 @ non

pesitive direction of 09-29
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The required transformatvion matrix of order 3, matrix S, is

¢cos y siny 0

5 = -siny cosy O (28)
o 0 1

this matrix is the transformation matrix for rotation of the X and {‘joint

axes about Z . Similary for rotation of Xn and Zn axes about Yn , macrix S
n
would be;
co5 ¥y 0 sin y
1 29
S - 0 0 {29)
-sin y o cos y

whete angle y is measured from O-Y to 2-: , and for rotation of the 3 and
v 9

Z axes about X , matrix 5 would be
n n

1 0 0
S = } ¢ cos Y sin y {30)
L 0 sin y cos y

where angle v is measured from 0-Z to Q-2

A
;

¥ Conformabie joint, Non-confarmable jolint,
7 ALl joint axes 0n~2n parallel to
parailel to global -

0.-2
axes, [ |

Ug 9

Fig.t10) Glebal and joint coordinale systems

The method of transformation from global to Joint coordinate sysCems
described below is best carried out on the assembled primary stiffness
matrix. Each jeint in the structure has six row submatrices of order n
associated yith it in the primary stiffness matrix (n being the order of the
stiffness matrix) which can be considered as a én submatrix lying
horizontally across the stiffness matrix. Similarly, each joint has six
column submatrices of order n associated with it, which can be considered as
an  nx6 submatrix lying wvertically in the stiffness matrix. Ar the
intersection of these two submatrices, a common submatrix of >rder § exists
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which lies on the diagonal of the primary stiffness matrix.
For any nencopformably constrained joint, take the é*n submatrix and
partition into submatrices of order 3. Lerting a typical submatrix be A ,
v

the required transformation is of the form

A = §5.A (31}
rn rg
i.e all such submarrices should be premultiplied by the transformation
macrix §. Similarly, parcitioning the n-6 sub-matrix into square submatrices
of order 3, typically Ac, the transformation is of the form;
A =a .8 (32)

en c?

i.e, all such submatrices should be post-multiplied by the transpose of
@atrix 5. From this it can be seen that the four square submatrices of order

3, Ad, which make up the submatrix of order & Lying on the diagonal of che

stiffness matrix have each undergone a transformation of the form.

A, = s.Adg.s (33)

Again neotre that only the lower diagonal portion of the stiffmess matrix
is stored by the computer program, and that is in variable band form, so the
submatrices will not be é°n and n% but typically less than 6 = 12 n and
1/2 n %6 resulting in considerably fewer matrix multiplications.

The portion of the vertical nx6é submatrix may not even be continuous
from top to bettom- see Fig.(11).

BDiagenal terms

Jeimg

\ T / & % b Submatcices
2 I

L i STORED FPORTLON

R Maibwadeh

/

Jrint 1 ] 3 ¥

Fig. {11} Storage of stif{fness matex in variable band form

Also, the common sub-matrix lying on the diagonal of the stiffness matrix
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will have been stored as a lower triangular matrix of order 6 rather than a
square matrix of that order.

It may seen that the use of nonconformable constraints is very limited,
but it can be used to great effect in the analysis of symmetric structures
by a reduction in the overall size of the problem, [8].

The stiffness macrix is now transformed to the various joint coordinate
systems and the constraints may now be implemented, but first an additional
step is carried out bty the computer program. The decomposition of the
stiffness matrix, for which see later, incorporates a singularity check and
values for this check are evaluated at this stage. The values used are the
means of the leading diagonal terms of the matrix for each degree of freedom
that an individual joint has. Having obtained these six means, they are then
dixided by a suitable wvalue.(in the computer program the divisor used is
10°) and stored. Alse at this stage, the leading diagonal terms of the
matrix are output to a file to allow checking of the matrix,

The final step in modifying the primary stiffness matrix to the structure
stiffness matrix may now be carried out. This involves the implementation of
constraints. Consider the equation

k.d = w (34)

which contains no information regarding the manner in which the structure
is supported, and w centains components of reaction which are,as yet,
unknown. Let § be the swn element of d and additionally let it correspond
a

to a constraint at a support. It can be seen that; 5s =g (35)
and this condition must be imposed on k.d = w.

Partitioning i.d = w, such that the sth row and column of % and the
corresponding elements of d and w become separated from the rest of the
system,

E ¢ K d W

a2 as ab a a

K K

sa 5 5b L H

ba b Kbb b L wh

-l

[+
I

I

(38)

=
=
=1

where r is the component of reaction at the c¢onstraint. Eq.(36) may be
3

represented by three equations.
Kd +E &8 +FE d =w (37) Kd +R é§ +KR d =1 (38)
aa a as 5 ak b a £

Kbada * Kb16| M Khbdb = “b (39
Substituting the constraint condition from Eq.(35) into the above three
equations gives.

K d +% d =w (40) K d +K d =r {al)

EY S | ab b a a2 b b s

da+1-(b d = w (42)

a b b ]

Equation (41) expresses the condition to be satisfied sueh that the
displacement at the s degree of freedom is consistent with the overall
equilibrium and compatibility of the structure .After substitution of the
constraint condition, Eqns. (40) and (41) have been modified to include the
requirement §‘= 0, but Eg.({41) relates displacements te the vreactive

component r , with which we are not concerned, so this equation can and
5

should be omitted from the system. This leaves Egns (40) and (42), which can
be combined in the matrix equation,
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X L d_ u
S B =1 - (43)
i d w
L ks . b b | L bl

Comparing this equation with Eq.(38), it can be seen that, in effect, all
terms associated with § have been removed As regards the computer program,
to carry out such an action would be an extremely time consuming chore, so
an alternative method is adopted as shown by the matrix equation;

KII l E | ab dl -] wl
o 'x 'o s | = |o (44)
b | Y
- l J. - d -
ba ! © ' Kbb b “b

The cendition 8+= 0 is scrill sarisfied, but instead of deleting a row and
column of the matrix and a term in each vector and them ’‘closing up® the
matrix and vectors, the off-diagonal elements of the sth row and column of K
and the sth  element of w have been replaced by zero and at the intersection
of the sth row and column in K the zlement has been replaced with a non-zero
number x. x need only be unity, but in this program it 1s taken as a large

number, i.e 10°% The reason for using such a large number will be explained
later in the next article of matrix decomposition. Once this modification
has been carried out for all constrained degrees of freedom, the matrix has
been fully modified to rthe structure stiffness matrix which relates
displacements to external loads only, by the equation

Kd=w {(45)
4.2 DECOMPOSE STIFFNESS MATRIX.

Having formed the structure stiffness matrix,the system of simultaneous
equations k d =w must be solved and the first step towards this is to
decompose the matrix, The computer program used in this research uses the
CHOLESKI merhod of decomposition which is ideally suited to the task for a
nunber of reasons. It should be noted that CHOLESKI decomposition is only
suitable for positive definite, symmetric matrices and the stiffness matrix
is of this type. This method will decompose a matrix & such that;

A=t1.1", (46)

where L is a2 lower triangular matrix and, as its transpose, L' is an upper

triangular matrix. From this it can be seen that only one of these two is

required as cthe other can be simply obtained from it.As the computer

program stores the lower triangular. portion of the stiffness matrix, it is

the lower triangular matrix L which is stored, L Occupying the same storage

space afver decomposition as the stiffness matrix did before decomposition.
The equations governing this merhod of decomposition are;

-1

L, = a -1 L 47 for elements on the diagonal, and
kot
j-1
Ay E . L jx
1” = . (i»}])  (48) for the off-diagona) elements

The elements on the diagonal have their square root taken due to the fact
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that they are the product of the diagonal terms of L and L, 1.e 1“and only
L (hence 1i1) is required. The decomposition is carried out row by tow from

top to botrtom During the decomposition, prior teo having its square root
taken, each pivot is outpurt to a file and is checked to derermine whether
the matrix should be considered singular. If the pivot fer a particular
degree of freedom is found to be less than the simgularity check wvalue (i.e
one millionth of the mean of diagonal elements for that degree of freedom),
the matrix is considered singular and execution of the program is halted.
This explains why, when a constraint is applied to the stiffness matrix, a

large value (1050) as opposed to unity is placed on the diagonal.

4.3 INPUT LOAD DATA AND FORM LOAD VECTCR.

In the computer program A some what different and simpler approach is
adopted when forming the load vector w to that used in forming the stiffness
matrix K., Whereas with the stiffness matrix , K was formwed and then modified
to K, with the load wvector, w cannot be formed due to the fact that it
contains unknown compenents of reaction. Loading for a single-load case are
read into the the lpad vector, these loads being in terms of the global
coordinate system. This vector now contains all the loads applied cto the
structure for the load case in question,including loads applied to degrees
of freedom which are to be constrained, but obviously no components of
reaction. Two steps only are now required to modify this vector to the load
vector w. The first of these steps 1s concerned with non-conformable
constraints and the second 1s the implementation of the constraints.

If a jJoint in the structure is nonconformably constrained, the elements
of the load vecror associated with thart joint must be transformed to that
joint’s c¢oordinare system, just as the elements of the sctiffness matrix
associated with that joint were transformed. There will be six terms in the
load vector associated with any joint 1, these being;

= ]

w, = (69)

The upper three terms corresponding to applied forces in the X,Y and Z
directions and the lower three terms corresponding to applied moments.
Letting b be a subvector of order 3 corresponding to either the upper or

lower three terms of W the required transformation becomes,.
b=15.b (50}
n v

where; 8§ i1s the same transformation matrix as used in transforming the
stiffness marrix (Eqns. 28, 29 or 30).

The loads applied to a non-conformable joint will now be in terms of that
joint’s coordinate §ystem.

Once thig transformation has been carried out for all non-conformable
joincs, rthe constraints may be implements on the load vector. Eqns (34 to 44
} explain the principle involved, bur in addition ko simply satting the
required terms of the load vector to zero, any forces externally applied to
a constrained degree of freedom will become reactions of the same magnitude
and opposite sign to that of the applied force. Therefore, before a
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constrained degree of freedom is set to zere, the wvalue of that element of
the load vector should be transferred te a reaction vector where its sign
should be changed. For example, if a joint i is constrained against vertical
movement and is lecaded with a vertically downward force -Piz, a vertically
upward reaction of + Pizx will be induced When all constraints have been
implemented, the load vector is fully modified to w and the system is ready

to be solved

4.4 SQLVE SYSTEM AND EVALUATE DISPLACEMENTS.

The system Rd=w is now ready to be solved to determine the unknown nodal
displacements. Expressing Kd=w in general terms.

A.x =b (51) where A has been decomposed to L.L', i.e
L.l .x =b (52)

The solution can now be carried out in two distinct stages.

let L' .x =Y (53) then LY = b (solve for y) (54)
and L'.x =Y (solve for x) (55)

Hence the displacements are evaluated and, in the computer program,
they are stored in the same space as the load vector was before seoluction,
This is possible as the load vector is no longer required.

If any joints in the structure are nonconformably constrained, the
elements of the displacement vector associated with those joints will have
been evaluated in terms of the various joint coordinate systems and must now
be transformed back to the global coordinate system. There will be six terms
in the displacement vector associated with any joint i, rhese being;

d = {56)

The upper three terms corresponding to translations in the X,Y and 2
directions and the lower three terms corresponding to rotations. Letting b
be a subvector of order 3 corresponding to either the upper or lower three
terms of di, the required transformation becomes.

b =5 ".b {57)

where § is the same transformation matrix as before (Eq.(28), 29 or 30)) It
can be seen that this transformation is the inverse of that used transform
elements of the load vector from the global to the joint coordinate system
in Eq.(50), but as rthe matrix $ is orthogonal, the transformation may be
written as;

T
b =8 .b (58)
q n
After 2ll such transformation have been carried out, the displacement

vector is in terms of the global coordinate system and the displacements are
output to the displacement data file.
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4.5 EVALUATE MEMBER FQRCES AND REACTIONS

The first step towards evaluating member forces is again to form the
member stiffness submatrices KH,KB,KCand Ku as in Eqns (11}, (12), (13}, and

(14) These are formed in the member coordinate system, which is of course
the coordinate system in which the member [forces should be evaluated to be
meaningful. these submatrices relate fortes at the ends of a member to the
displacements of those ends, so it follows thact, as rhe member forces are
required in the member coordinate system., the displacements should also be
in that coovdinate system. This means that for each member, the elements of
the displacement veactor associated with the twe ends of the member must be
transformed from the global to the relevant member coordinate system. This
is the inverse of the transformation used to transform the member stiffness
submatrices from che member te the global coordinate system, but as the
transformation matrices are orthogonal the transpose of the matrix rather
than its inverse may be used. the transformarion applied to a typical
subvecctor b of order three associated with end I of z member can therefore
be written as;

bm = Rr.Pr.bin (59) for non vertical members, noting that;
R'.P = (PR}’ (60)
and bi = p' bi (613 for vertical members,
m %

In Eq.{(59), marrix R is as given in Eq.(15) and matrix P is as given in
Eq.(16), in Eq.(6l) macrix P is as given in Egq.(26).

With both member stiffness submatrices and joint displacement subvectors
now in terms of the member coordinate system, the member Fforces can now be
evaluated for a typical member b by using the relationships.

P = Fip Gip v By 9 (62}

P T K %t B 4 (63)

where P and P~ are the member end force vectors for member ends i and j
j

respectively and d‘band d]bare the joint displacement subvectors for joincs

i and j. The form of these vectors is

- Pihx W T‘E’jt'u; ] ’—Jibx—l -5jbx-
iby ijy diby Siby
Pibz P]bz dibz Sihz
P = o Piy = mo b oo b o
ibx Ibx Bibx Bjox
mihy m]hy Siby Siby
Lmlth Lm“”J B1bz O)b1
- e (- -
(64) (65 (66) (67)

The wvectors P each c¢ontaining three components of force and cthree
components of moment and the vectors d containing three components of
translation and three components of rotation. Having thus evaluated the
forces in a member, they are output to the member forces file, but before
going on to the next member,the current member should be checked to see
whether either end is subject to a constraint. IF a member end is subject to
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a constraint, then the forces at that end of the member should be
transformed to the global coordinate system using the transformations

[

b p.R.b (68) for non-vertical members and

] -]

bg =Pb (69) for vertical members,

where b is & subvector of order three of the member-end force vector for the
constrained end of the member, and the transformation matrices P anl R are
the same as for previous transformations.

When this step has begen carried out for all members connected to the
constrained jeint , and the results have been summed, the resulting vector,
the constrained member-end force vector, contains the forces applied to the
constrained joint by the members in the global coordinate system. If the
joint is conformably constrained,these values may now be added to the
reaction vector for rhat joint, which already contains any external loads
applied to constrained degrees of freedom. I{, however, the joint is
non-conformably constrained, the values already iIn the reaction vector will
be in terms of the joint coordinate system and therefore the forces applied
te the joint by the members wmust be transformed te the joint coordinate
system hefore being added to the reaction wector. letting b be a subvector
of order three of rthis constrained member-end force vector, the required
transformation is

bn = S.bg (70
where the transformation matrix $ 1is the same as for previous

transformations. The resulting vector may onow be added to the reaction

vector, which will now be complete and for a typical constrained joint i
will be of the form,

= | - 7y

which contains three components of force and three of moment. If any of
the degrees of freedom associated with the jolnt are not constra.ned, then
the wvalue of reacrion for that degree of freedom will be zero due to
equilidbrium being satisfied. The reactions can now be cutput to the reaction
data file. If there are any more load cases to be solved, the program now
repeats sections 4.3,4.4 and 4.5 for each load case.

5. RESULTS,

After the analysis, the contents of the output data files are as follows,

a2) The member lengths data file contains the length of each member

b) The joint displacement data file contains displacements in the form of
three translations and three rotations per joint in terms of the
global coordinate System.

¢) The member end forces dacra file contains three forces and three
moments for each end of each member in terms of the member co-ordinarte
system for each member. Space can be saved in this file by listing
three forces and three moments at one end of the member and two
moments at the other. As all loads are applied at Jjoints, the
following values are all that are required:
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yi ¥i
d) The reaction data file contains three reactive forces and three
moments at each constrained joint in terms of the joint coordinate
system for each joint. Cenerally, the joint coordinate system will be
coincident with the global coordinate system (i.e.for all cenformably
constrained joints) but will differ for nonconformably constrained
jelints,

e) The matrix data file contains the leading diagonal terms of cthe
primary stiffness matrix and the mean value of each of the six degrees
of freedom per joint. These mean values divided by the singularicy
check value are alsc contained in the file, as are the pivotal wvalues
during decomposition of stiffness matrix.

The output from the computer graphics is shown in Figs.l2 and 13-30. the
dome shown in figs 12-30 is a shallow spherical dowe having a span of 40 m
and a rise of 5 m. It is subdivided into six spherical isosceles triangles,
each of which is further sub-divided eight times. Figure 12 shows the
general arrangement of the structure. This dome was analyzed using the
implementation of the analysis described in this paper. The loading applied
te the structure was a combination of a dead load of 0.5 KN/m2 proportional
to the surface area of the dome and an imposed load of 0.75 KN/m2 on plan,
both distributed proportionally between all the joints. The dome was
analyzed for two different support conditions: first, having six supports,
the six joints at the ends of the maip ribs, and secondly, having 48
supports i.e all perimeter joints. In each care, the jolnts were constrained
against x,y and z translations but free to rotate. The results of the
analysis for the first support condition arxre shown in Figs. 13-21 and for
the second support condition the results are shown in Figs -22-30

6. CONCLUSIORS

An attempt has been made in this paper to present method for the solution
of skeletal systems as applied to braced domes. The designer however, should
have no real difficulty in deciding upon a satisfactory arrangement and then
carrying out a structural analysis.

This paper gives a step-by-step description ¢f the operation necessary to
carry out an analysis of structural. systems. The method of analysis
described is the finite element stiffness method, a popular and widely used
technique which is ideally suited to implementation on a digiral computer.
The steps detailed in this paper are those required for a linear static
analysis of elastic structural systems comprising prismaClc members
connected at fully rigid joints. Such skeletal systems may be considered as
belonging to a particular class of structure within the field of finite
element analysis in that idealization of the structure Into elements is
coincident with the members of that structure.
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