Menofia University

Faculty of Engineering Shebien El-kom

Basic Engineering Sci. Department.

Date of Exam: 23 / 5 / 2018

First semester Examination, 2017-2018



Subject: Complex Analysis.

Code: BES 605

Year: Master Grade 600 Time Allowed: 3 hrs Total Marks: 100 Marks

## Answer the following questions

## Question 1 (30 MARKS)

- A) (i) Prove that the function  $u = e^{-x} (x \sin y y \cos y)$  is harmonic.
  - (ii) Find v such that f(z) = u + iv is analytic.

(iii) Find f(z).

(10 Marks)

(B) Prove that  $\frac{d}{dz}(z^2 \bar{z})$  doesn't exist any where . (i.e the function is

 $f(z) = z^2 \bar{z} \text{ non analytic}$ 

(5 Marks)

(C) Find the orthogonal trajectories of the following families of the curves:

a) 
$$x^3y - xy^3 = \alpha$$
, b)  $e^{-x} \cos y + xy = \alpha$ 

b) 
$$e^{-x} \cos y + xy = \alpha$$

(D) Evaluate

$$\int_{(0,3)}^{(2,4)} (2y+x^2) dx + (3x-y) dy \quad along:$$

- a) The parabola x = 2t,  $y = t^2 + 3$ .
- b) The straight line from (0, 3) to (2, 3).
- c) Then from (2, 3) to (2, 4) astraight line from (0, 3) to (2, 4).

(ID Marks)

## Question 2 (40 MARKS)

If C is the curve y = x3 - 3x2 + 4x - 1 joining points (1, 1) and (2, 3). Find the value of:

$$\int (12z^2 - 4iz)dz$$

(5 Marks)

(B) If f(z) is analytic inside and on the boundary C of a simply – connected region R, Prove Cauchy's integral formula.  $F(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz$  (5) Verify Green's theorem in the plane for  $\oint_c (2xy - x^2) dx + (x + y^2) dy$ 

Where C is the closed curve of the region bounded by  $y = x^2$  and  $y^2 = x$ 

(ID Marks)

(D) . Evaluate:

$$(a) \oint_{\mathcal{C}} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} \, dz, \quad (b) \frac{e^{2z}}{(z+1)^4} dz \text{ where C is the circle } |z| - 3. \tag{ID Marks}$$

(E) Find the residues of

$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$

at all its poles in the finite plane.

(ID Marks)

## Question 3 (30 MARKS)

(A) Prove that (i)  $\int_0^\infty \frac{\ln(x^2 + 1)}{x^2 + 1} dx = \pi \ln 2$ 

(ii) 
$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

$$\int_0^\infty \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}$$

(15 Marks)

(B) (i) Evaluate

$$\oint \frac{e^{3z}}{z - \pi i} dz$$

if C is

- a) the circle |z 1| = 4
- b) the ellipse |z 2| + |z + 2| = 6
- (ii) Evaluate

$$I = \frac{1}{2\pi i} \oint_{C} \frac{e^{z}}{z - 2} dz$$

if C is

- a) the circle |z| 3
- b) the circle |z| = 1
- (iii) Find a transformation that maps the real axis in the w plane onto the ellipse  $(x^2/a^2) + (y^2/b^2) = 1$  in the z plane. (15 Marks)

|                        |                                 | Т    | his exam | measure | s the follo         | wing IL | Os   |                     |      |      |
|------------------------|---------------------------------|------|----------|---------|---------------------|---------|------|---------------------|------|------|
| <b>Question Number</b> | Q1-a                            | Q2-a | Q3-b     | Q2-e    | Q2-b                | Q3-b    | Q2-d | Q1-b                | Q3-a | Q1-d |
|                        |                                 |      | b-ii     |         |                     | b-i     |      |                     |      |      |
| Skills                 | Knowledge &understanding skills |      |          |         | Intellectual Skills |         |      | Professional Skills |      |      |

With my best wishes