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Transition or easement curves are curves introduced
between the straight tangent and circular curve on which the
radius of curvature decreases gradually from infinity at
tangent-spiral interesection to the radius of the circular
curve at the spiral-circular curve intersection.

Due to the fact that the speed of vehicles have been
greatly increased in the last few years, particular attention
must be paid to the design, alignment and setting-out works
aof the transition curves in order to eliminat speed restric-
tions on highways. However for these reasons an investiga-
tion on transitions is a necessity.

The subject of this paper deals entirely with the study
of the different types of transition which commonly are used
in highway Engineering practice. It gives a survey for the
different types of transition from all aspects. It also
treats the analytical and mathematical part in sufficient
depth. The paper is devoted to represent the principles and
characteristics of tranmsition, typical cases of their inser-
tion as well as objectives of their provosion in practice,

The paper contains a detailed study for different types
of transitions and a comparative analysis between the different
types which are: the clothoid, the cubic parabola and lemni-
scate.

The fundamental equation of each curve is discussed.
Moreover the setting-out elements and data are thoroughly
presented. .

The study also includes a comparative study between the
different approaches to find the lengths of each type of
transition and the setting-out works for each curve.

The results and conclusions as well as practical recomm-
endations are derived, adopted and represented.
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SUPERELEVATION

Superelevation is provided in order to counkteract the
effect of the centrifugal force and to reduce the tendency
of cars to overturn. The amount of super-elevation depends
mainly on the speed of vehicles and the radius of curves.
The amount of superelevation varies from zero at the beginn-
ing of the transition curve to its maximum value at the beg-
inning of the circular curve.

The advantages of providing superelevation can be summ-
arised as; (1} obtaining high speeds without any danger of
overturning which means increasing volume of traffic.(2) keep-
ing the vehicles at their correct side and lessens the danger
of skidding at bends. (3) economy in maintenance, because it
keeps the pressure on the wheels equally distributed and it
results in less wear and tear of wheel tyres and springs, (4)
allowing the water to drain off doing away with the gutter on
inner adge of road. (5) enabling vehicle to move at high
speeds; (6) making the change from the tangent section to
the curved section, to the tangent section of a track in a
safe and camfortable operation. and (7) transition curve
provides gradual increase of superelevation to the outer edge
above the inner edge and thus totally eliminate or partially
shocks or severe jerks on the moving vehicles.

TYPICAL CASES FOR INSERTING TRANSITION CURVES

The following are the main typical cases for inserting
transition curves:-

Case 1:

Transition between straight and curved portion as shown
in Fig. (1 ).
Case 2:

Two transition curves between two tangents and a simple
circular curve as shown in Fig. ( 2 ).
Case J:

Wholly transitional curves

In case the circula:‘curue is very small, it may be
eliminated and this case will be reduced to a case of two
successive transitions between two tangents as shown in
Fig. ( 3 ).

Wholly transitional curves have the advantage that there
is only one point at which the radial force is a maximum and,
therefore, the safety is increased.



PLAN

Cadsy

Pig.( 2 ) Supereleviotion and curveture diagsram,
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Superelevation and curveture diagram,

Fig.( 3 ) Wholy transitional curves.

Flg.( 4 ) Combining spiral,
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Case 4:

Combining spiral

In Fig. (4), the combining spiral AC is tangent to the
curves having radii R, and R,, and it has the same radius
of curvature as the circulararc at each point of tangency.
That is, AC is a portion of a simple spiral cut to fit as a
transition between curves of degree Dl and DZ'

Only one combining spiral will satisfy the given condition.

Case 5:

Transition curves applied to a compound curves:

In this case, as shown in Fig. ( %5a ) the amount of sup-
erelevation can not be designed to conform both circular
arcs, and the design speed must relate to the smaller radius,
1f the two curves are to be connected by a transition curve
of length (L), the shortest distance (S) Fig. { Sb ) between
the two circular curves is given by glover,

5=L2 (1 - 1 )
24 Rl R2
The length of the transition portion (L) between the two

circular portions can be deduced as follows,

7 7
L \Rab2 - Ryl
R, - R,

Case 6:

Transition applied to reverse curves

1f transition are applied to reverse curves, the radii
must be reduced to allow the transition curves to be introd-
uced, Fig. ( 6 ).

Practically, a straight portion must be laid down between
the two reversed curves and length must not be less than 1/10th
of speed in meters. (5)

Case T7:
Series of transitions

As shown in Fig. ( 7 ), to join different and levels.

Case 8:

Transition between two separate circular curves

Fig., ( 8 ), illustrates a method of connecting two circles
by means of a reverse transition curve, the size of the trans-
itions being proportional to the radii of the circules thay
touch.
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(b) Lshift between the two circular curves.

Pig.( % ) Case of transation curves applied to compound
curve,
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Fig.( 6-a ) Superelevation and curvature diagram,

Fig.( 6-b ) Transition between three tangents.
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THE SHIFT IN TRANSITION CURVE:

The circular curve may be located at the position it
would assume without transitions if the two tangents are
shifted outwards from the curve by an amount which will per-

mit the introduction of the transitions. The amount of
shift is given by the following equation.
- L2
S =
24R
where,
S = 5hift in meters.
L = Length of the transition in meters.
R = Radius of the circular curve in meters.

THE INSERTION OF TRANSITION CURVES 1INTO THE EX1STING ALIGNMENT

Designing the new lines it is preferable to choose the
transitions to permit the predict future widening by running-
out the shift of the circular and transition lengths accord-
ing to the maximum. -Permissible speed on the actual radius
not according to the actual speed to avoid any required future
shift which could result in increasing costs and delaying
vehicles. The insertion of transition curves into the exist-
ing alignment of tangents is done by one of the following
methods: -

1- The radius of the existing circular curve is reduced by
the value of shift, Fig. (9a).
Shift 5 = R - R, = _L°
Z4R
2- The radius and centre O are retained and the tangents are
moved outwards to allow transition, Fig. {(9bJ.
Shift 5 = Il 12 Cos &2-
3- The radius of the curve is retained, but the centre 0 is

moved away from the intersection point. Fig. (9c).

Shift § = U1 02 Cos %

4- Tangent, radius and part of the existing curve are reta-
ined but a compaound circular curve is introduced to allow
shift, Fig. (9d).

5- A cambination of any of these cases.

TYPES OF TRANSITTON CURVES

In ths following study three different transitions are
considered namely the clothoid, the cubic parabols and the
lemniscate.
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Fig.{ 9 ) The insertion of transition curves into

the existing alignmant,
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- THE CLOTHOID

Fundamental equation of the clothoid

The centrifugal force acting on a vehicle at a certain
point on the curve is given by,

P = wy?
gr
where,
T is the radius ofF curvature at this point,

For a constant speed, the distance L along the transition
curve measured from the tangent point will vary with time.
Hence, we have

2
P oc L WY
gr 1
putting W, V and g as constant values, Hence L o ——

or r L = constant = R L. T

which is the physical Fundamental formule of the clothoid.
Thus the fundamental requirement of a transition curve is that
its radius of curvature r at any point shall vary inversely

as the distance L from the beginning of the curve. As R & L
are lengths, the fundasmental equation of the clothoid will

be in the Form

R L = Az

where
A is a parameter.

CARTISIAN COD-0ORDINATES FORM
From Fig. (10a), we have

Al = T oo
dd = 1/r dl
but rl = RL = Az
ddg = L/A2 dl
By integrating: 2
L
1] = 7 + C
24
Cc = 0D at L = 0, B = 0D
Thus, @ = L2 = L2
242 2RL

and L = y2RC . @

The length of the clothoid is given by
L = 2 Rg
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As the variable angle @ can not be measured or plotted
_form one position, it is difficult to set it out in this form,
therefore, the use of the cartision co-ordinates form is a

must.

From Fig. (l0b), we bhave,

dx = Cos @
dl .
by expanding Cos @
dx =1 - ﬂz + ﬂq ﬂé +
d1 71 41 6 1
but we have, @ = L2
2RL
Thus,  dx L4 L8 12
=1 z * 4 6
dl 2 1(2RL) 4 1(2RL) 6 1(2RL)
by integrating,
LZ L9 Ll}
X =L~ 7 * i 3
S5x2 l(ZRL) x4 %(ZRL) 13xé6 !(ZRL)
Also, EI2 gq Ej6
X =L (1- + - o)
5x2 1 9x4 1 13%6 1
For @ max.
L =L total, then
X =L (1-_LZ e (1)
40 R?
Simolarly we have,
2 L2
Y.___ 6R (l__ 2 ) .-(2)
56 R

THE BASIC ELEMENTS OF THE CLOTHOQID

As illustrating in Fig.
clothoid are:

(10b), the main elements of the

1. Co-ordinates of the_cénter of curvature

Y. =Y + R cos @

0
XO = X - R sin @

2. Length of the two tangents

Y
Ta =GP = sin @

+.a

+ ..
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Pg. (10-a) Equation of the clothoid,

-Fhift }-

F1g.(10) The basic elements of the ¢lothoid,
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Tl = GT = X - ¥ cost @
3. The chord length {(TP)
C = X + Yz

4, Length of the transition clothoid (L)}.
The transition: length can be obtained in terms of the
parameter and velocity through the relation,

A =o0.207 v

and L = AZ/R

Then L ;

0.0428 x V
R
where, V in Km/br.

5. The shift (5),

S = YU - R

6. The tangential angle ( = )
To find the tangential angle ( =< ).

3 5
L SO p 26 B
ten (&) = 5= = 35—+ g5 * 15975 * -
Since, (e ) = tan ( = ) - tanax + tapn =
3 S
It can be shown that
o« . B _ _8@ . 329
- 3 2835 467775
and so, o = i K
-3
where,
K = 3.095 x 107°8° + 2.285 x 10”°g°
B being in degrees and K in seconds.

Values of K are given in the Table (1), showing the values
of K for different values of M. Thus, if P is smell,

= = @/3
Jenkins (2), shows that if B < é°, no correction is required,
and if # < 20° npo correction ->» 20 is required. According
to Prof. Royal Dawson (2}, up to a value P = 20° in the case

fo sporal, the deflection angle is equal to #/3, but for
B > 20°, the following relationship holds food,

ot = B/3 - NS

The value of N_ can be read out from Royal Dawson curve given
in Fig. (11).
This value is sufficiently accurate for all practical purposes.
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0 1]
g K g K @
1 /0 0 16 |0 13 || 31 1 32
2 10 0 17 |0 15 || 32 1 b1
3 |0 0 18 (0 18 || 33 1 21
5 |0 0O 19 |0 21 || 34 2 2
5 10 0 20 |0 25 || 35 2 13
0 0 21 10 2 2 24
? 0 1 20 |0 3 %9 2 37
8 |0 2 23 |0 38 [ 38 2 30
9 |0 2 24 |0 43 39 3 4
10 |0 3 25 |0 48 || &0 3 18
11 |0 & 26 |0 54 || 41 3 23
12 |0 5 27 |1 1 42 3 L9
1|0 7 28 |1 8 43 b 6
1k | 0 8 29 |1 16 || 4k 4 2
15 |0 10 30 |1 25 || 45 b 42

Teble ( 1 ) The values of K for different values of @

018
0.16
014
f
012 ]
—~ 010 | °‘=?%"N
w /
m /
w
% 0.08
w
a
- 006
z
0.04 7
0.02 )4
1/’
I~ g
0
v 10 20 30 40 50 60
b —>

Fig.( 11 ) The values of N, for different values of @,



C. 34 M.E. Sakr, M.El1-Shabrawy and M.H,Abdel-Rahim
THE LEMNISCATE

The lemniscate mostly is used in modern road constrection
in preference over the clothoid for the following reasons:
1t 1is desired for a transition curve, that the rate of decr-
ease of the radius of curvature should be less towards the
end of the curve than at the beginning, the lemniscate of
Bernoulli 1is a curve which satisfies that condition. The
lemniscate and the clothoid are very similar up to a devia-
tion angle of 60° but after that, the radius of curwvature
of the lemniscate is greater than that of the clothoid.
Thus the rate of increase of the radius of curvature, of the
lemniscate 1is more gradualey than that of the clothoid.

At deviation angle of 135°, the radius of curvature of
the lemniscate 1is a minimum and at a greater deviation angle
it begins to increase again. Furthermore, the rate of change
of the radial acceleration for lemniscate is a maximum at the
_beginninl and decreases very slowly to a minimum at the end
of the major axis.

Lemniscate is a symmetrical curve with large deflection

angles which can be better used than the clothoid. Lemnis-
cate has a valuable property, from the settir -out point of
view, that the exterior deflection angle is ays exactly

three times the polar deflection angle.

EQUATION OF THE LEMNISCATE

Referring tp Fig. (13). The polar equation of the lemn-
iscate is C~ = a~ sin 2e« Differentiating this equation,
with respect to the deviation angle (o< ),

2C dec = 2 az cos 2
df’k2
and deviding by 2C
1 dc - a2 cos 2 X
C de< 7 2
> C
a~ cos 2«
= 5 = cot 2
a  sin 24
From Fig. (13), we have,
cot 9= Moo S o1 g
P2M CS C d ot
and so, B = 2«
but, B = B +

hence @ = 3 o<
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f

o

Fig. (12 ) elements of the lemniscate

Fig. (13) Equation of the lemniscate
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That is, the deviation angle is exactly three times the polar
deflection angle, a most important property of the curve.
In Fig. (13), we have,

PPy = Ol = 51ag ° Sie T C Tsinzes
hence dl1_ = C - C - a’
d ok hsin 2 C2/32 C
Now, D& = rdf = 3r d«
and so, _EE_ = 3r or a2 = 3rc.
C
Thus, C? = 3rc sin 2 o
C = 3r sin 2

If the lenniscate approximates to a circle of radius R,
then, C = 3R sin 2« which is the practical form of the lemn-
iscate curve.

THE CUBIC PARABOLA

The cubic parabola is most widely used in practice
especially for railroads because of its simp icity in both
calculations and setting-out. It is having .he advantage
that no special tables are required for setting-it out. It
is almost identical with the clothoid and lemniscate for
deuiaSion angles up to 12°, The equation for cubic parabola
Y = X“/6RL is the first approximation of the true intrinsic
equation of the spiral clothoid. This approximation is
valid only for small deviation angles with negligable errors.
The radius of curvature of the curve decreases from value of
infinity when @ = 0 to a minimum value of r = 1.39 YRL when
the deviation angle @ is (24° (05' 41"), and it begins to
increase again, and consequently the curve becomes useless as
a transition.

THE EQUATION OF THE CUBIC PARABOLA

If the radius of curvature of the curve is {r), then

1 gEy:dxz
r [1 + (dy/dx)2]3/2
It is assumed that the deviation angle iﬁ small, therefore,
( —Q‘Y---)2 can be neglected and A . dy
dx r de
It has been outlined that in the ideal transition curve,
R L = conctant, and the length of the cubic parabola is cons-

idered equal to the length of the abscissa (X=L)
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then r.X = constant = R.X
A dy 1 X
2 - - RX
dx r
2
dy _ X
dx - 2RX
N G
- 6RX
which is the fundamental basic equation of the cubic para-
vola. The constant of integration disappear since Y and

dy/dx are zero when X is zero.

Comparison between spiral clothoid and cubic parabola:
1. Clothoid

X = L{1 - L2 )
40 RZ
Y = L2 ( 1- L2 )
6R Y
L 14.45 28.90 43.35 DR 72.25
X . 14,45 28,89 43,33 57.77 72.19
Y 0.087 0.35 0.78 - 1.39 2.174

2. Cubic parabala

X = L (The length being measured along the X-axis)}.
v . X
T 6RL
L 14,45 28.90 43,35 57.80 72.25
X 14.45 28.90 43.35 57.80 72.25
¥ 0.017 0.14 0.47 1.11 2.175

Toleeance X &ay,

o X 0.00 0.01 0.02 0.03 0.06

oY 0.07 0.21 0.31 0.28 D.001
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DETERMINATION OF THE LENGTH OF TRANSITION CURVES

Safe operation at high speeds requires that curves are
designed to fit natural driver-vehicle behaviour. It 1is
obviously impossible, when travelling at any appreciable speed
to change instant gradually from a straight to a circular
path at the T.C. of an untransitional curve. On such align-
ment the driver makes his own transition as a matter of
necegsity, usually by starting to stear towards the curve in
advance of the T.C. In doings, there is bound to be some
deviation from the traffic lane or railway track. If the
curve is sharp or if the speed is high, the deviation may
result in dangerous encroachment on the shoulder or on the
adjacent traffic lane or railway track. There are two condi-
tions must be fulfilled to determine the length of transition
curves namely:

1. Rate of change of centrifugal acceleration to be gradway
developed.
2. Distribution of the designed superelevation at a reasonable

rate.

LENGTH OF TRANSITION CURVES FOR HIGHWAYS

The different approaches may be followeu for determining
the length of transition curves for highways:

1. Length of transition in terms of rate of change of cent-
rifugal acceleration (SHORTT'S formula)

I
s ~ 46,6 CR
for speeds up to 32 and exceeging 96 Km/hr the value of

C will be 0.76 and 0.46 m/sec”. respectively. For speeds
between 32 and 96 Km/hr, the value of C is given by:

_ 73 3
= TV+ 64 y

2. Length of transition in terms of the centrifugal ratio:
By Combining SHORTT'S formula with a centrifugal ratio

of 1/4 we get,
3.84
Ls = C 'VR

.

L

C m/sec

(R & Ly in m, C in m/secj).

3. VLength of transition in terms of rate of introduction of
superelevation:
For the case in which the pavement is rotating about
centerline. '

Ly = % (superelevation X width of highway X lateral
gradient).

E S.H.e
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For the case in.which pavement is rotating about inner
edge
LS = S5.W.e
4. Typical formula applied on clothoid
The parameter of clothoid is given by:

A = 0.207 W

fram which the length of tramsition can be determined
from the relation

LR = Az

so the length of the transition is
, . _0.0628 v’
5 R

In fact there are different emperical formulas which are in
use by different countries, namely

1. U.5.A LS = 8.7 Ea V
L = 12.1 Eu Y
5
L = 475.0 Ea
]
2. England LS = 4.83 Ea Vv
LS = 4.83 Eu
L = 300.0 Ea
s
3. Japan LS = 6.2 Ea
LS = 7.5 Eu V¥
4. Germany L5 = 8.0 Ea V
L = 400.0 Ea
s
where:
L in meters, V¥ in Kmphr., Ea is the actual supereleva-

tion and Eu is the unbalanced one.

It must be noticed that the largest value of the above
mentioned forms to be used far each category.

SETTING-OUT OF TRANSITION CURVES:

The field procedure is to locate the tangent points on
the straights, and set-out the exit tramsition by deflection
angles or by offsets from the first tangent peoint. The
circular arc is set-out from the last peint of the entry
transition, B, Fig. (14).
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TP 1st transition
11

PP circular curve
12 0

2nd transition
P2T2 a

{(b) Deflection angles from the tangent

(¢) Offsets from the tangent

Fig. (15 )
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In order to determine the direction of the common tangent
FB, the theodolite at B is sighted on A and the horizontal
angle.

lBD. - (8, - 8)

or 180 -~ 2 BL
is turned off. The circular arc is then set-out in the usual
way, with initial and final sub-chords as necessary. A
closing check is provided by the peg at the beginning of the
exit transition. Though, transition usually is laid out
with equal chords, the number commonly being 130, such a process
does not serve all purposes. For example, on location prior

to grading, earthwork estimates are made more rapidly if cross
sections are taken at regular full statiocms and possibly halfF
station. Furthermore, important "breaks" requiring cross
sectioning way fall between reqularly spaced points.

During construction it may be necessary to set points on
a transition at trestle bents or on bridge piers. For these
reasons it is convenient to have a simple formulas for
determining the deflection angle to any point at a distance
L ft beyond the beginning of a transition. Generally, the
steps of setting-out transition curves are:
Fig. (14)

A F

Fig. (14 ) Setting out of transition curves,

1. Locate the point of intersection of the two tangents (1.
2. Measure the twotangent lengths from the point of inter-
section (1) to locate the two tangent points Tl & T2
Shift (S) = FD = L%/24 R
= F1 = (R+S) tan  &/2
FT = 1/2

tangent length T,1 = (R+S) tan /2 +L/2
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3. Measure the value of intersection angle ( & )

4, Set-out the 1lst transition curve TlPl from T, using one
of the following two methaods:
a) Offsets from the tangent by taking different values for
(X) on the tangent length and determining the corresp-
onding values of (Y) f{rom equation
X
Y= 6 R L
b) Tangential angles for different chosen chord length
using theodolite in setting-out.
The values of tangential angle must be calculated
from the following relations:

2

. w o L “

for clothoid, <= R T .S
+ 9.55 |
e = RL
for lemniscate, o< = % sin~1 C
3R
. -1 2
for cubic parabols,o¢= tan X
6§ R L

The method of tangential angles is more accurate than
the method of offsets especially when a theodolite of
high accuracy is used, even assuming chord (C) equals
arc (L) equals (X)

5. Locate and check the joining point (Pl) of transition to
circular wvurve 2
- Nl Pl = L
&R

6. Move the theodolite to (P.,) and set-out the shifted circu-
lar curve by offsets or déflection angles from the new
tangent Ql Pl Z.

7. Move the theodolite to T, and set-out the second transit-
ion curve towards (Pz) using the previous procedures.

Comparative study between 'the different types of transition

curves from settigg—out;ﬁoint of viex:

The following sample example is just a mean for compar-
ing the different types of transition curves regarding tangen-
tial angle method and offsets method adopted for setting-out
in this examples.

Assuming R= 120 m & L = 150 m. The curve 1is devided each
15m; and chainage of the {(T7.5.) is 30. By calculating
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tangential angles and off-ets, as given before, we reach to
the following values shown in Table (2).

1t is clear from the given example, that the cubic para-
bols is almost identical with the clothoid up to a distance
of 90m with difference not exceeding 9 seconds, in the case
of tangential angles, and 4 cin, in the case of offsets. After
this distance, while in the case of co-ordinates the values of
of fsets for the clothoid is less than that of the cubic parabola
and this is due to the assumption that curve length is measured
on the abacissa.

ln the case of the cubic parabola, hence the actual curve
length will be greater than its designed length.

ln the case of leminscate, vales of deflection angles
and offsets are always greater than that of both clothoid and
cubic parabola.

The use of the tangential angles method for setting-out
is resulting in fewer less error- than offsets method, and this
is obvisous in the case of cubic parabola as the offsets cal-
culated by tangential angles are less than that calculated from
equation,
3

6 RX

Ag a partial conclusion, it si clear that the cubic parabola
is most identical with the clothoid, this means that the cubic
parabola can be set-out instead of the clothoid,

CONCLUSION:

The types of transition curves discussed are the spiral
clothoid, the cubic parabola and the lemniscate of Bernoulli.
The calculations for setting-out these curves involve the use

of special tables. Moreover, the principles and fundamental
formulae in respect of superelevation must be followed in
order to obtain a reasonable transitional path, From this

study it is clear that for deflection angles up to 9%, there

is no practical difference between the different types of
transitions. ln such a gase the formula for both the transi-
tion spiral and the cubic parabola when calculating ordinates
are closely identically. Moreover the cubic'parabola is
almost identical with the clothoid for the deviation angles

up to 12°%, However the assumptions made in the derivation of
the cubic parabola formula begin to break doan beyond 12° and
further terms must be included to maintain the accuracy. Hence,
if greater accuracy is required, the clothoid should be used.





