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RODAL LINE FIRITE DIFFERENCE METHOD IN THE ANALYSIS
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ABSTRACT: A nodal line Jinile dif//erence bending analysis of (solropic
reclanguiar plales with free lalssal boundory conditions., wusging the nadal

ltne finile dij/erence method, (s precented. The anulysis descridbes the
linear elast(c dehaytour of rectongular plales resting on a Winkler (ype
jpundation and loaded on lts upper surjfoce with arbilrary lransuverse |oads.

A basic function fi(x one of the boundary conditions of (wo opposite free
onds (s used (o éexpress tho ndisplacemon? uwur tation along (he nodal tinee. To
falisfy Lhe ather condilion of the two opposite free ends, edge moments
equal 1n magnilvde dut ppposiie in direction were applied at the ends oy (he
nodal lines. Numerical resulis were obtained ond comgored wilh (hose
oblo(ned from another numerical solution. The campalison demonsiraled a good
ogreemgnt and indicated the validitly of the presentiad lechnigue.

INTRODUCT ION

The continuing and intensive interest for the improvement of the
golution technigues used in the analysis of two and three dimengional
problems has prompted the developmont of new semi-analytical methoda among
which the nodal line finite difference method NLFDM is one. The application
of this method in the analy=zia of rectangular plates requires the division
of the plate into a meah of prparallel fictitious nedal lines in onr
direction. The noda) line finite difference method calla for the usge -
bagic functiona to expreso the displacement variation along these nc
{inea, with the stipulation that such functions ghoyld satiefy a priori
boundary conditione at the ends of the nodal 1lines. Thus, the p-
differential equation is reduced to an ordinary differential equatier
can be transformed into a nodal line finite differenca equatien Y
central finite difference technique. The NLFDM method is similar
finite strip method FSM developed by CHEUNG [1,2,3), since both ¢
hagic functiona at nodal lineo. The moet commonly used basic fv
the eigen functiong derived from the 3olution of beam vibratior
equation. Thege bagic functions have been worked out explici’ &
[4) for different end conditions.
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The nodal line finite difference method NLFDK was firet iIntroduced Dby
the Author 17)., using the trigonometric series as a basic function {in the
analysie of rectangular plates with two oppasite simply asupported ends.
A basic functjion other than trigonometric series, was ugsed by the Author (8]
to analyze elastic rectangular plates with two opposite clamped ends. In
this analyeais, an iterative procedure was developed to overcome the coupling
property of the static equilibrium equationa. This iterative procedure is
similar in concept to that developed sarlier hy the Author [5,6] for the
bending analysis of rectangular plates by the finite strip method. The nodal
line finite difference method has slsoc besn extendad by the Author [9,10] to
includa the bending analysis of rectangular plates with variable flexural
rigidity as well as with abrupt change in thicknessa 1in one direction.

The objactive of the preaent work is to davelop a nodal line finite
difference solution for the analysis of rectangular vplates on alastic
foundation. The direct applications of this type of plates ara for inatance
reinforced concrete pavement of highways and runways as well a2 the
foundation rafts of buildinga. The s0il behaviour under such plates is of a
non~linear nature, therefore it is quite difficult to be modelled a1nca
ths deformation of the sofl ia not only a function of load intensity hut
alao a function of time and rate of 1loading. To oimplify the inherently
complex problem, it is assumed that tha bsupporting medium 8 iBotropic,
homogenous and linearly alastic. Such a type of subbase ia called a Winklar ’
type foundation. This aesumption is not accurate enough to represent the
ectual go0il behaviour. but in many cages it approximates closely the raal
situation. In the present work, elagtic isotropic rectangular plates resting
on elastic foundations are analyzed for free boundary conditions., A simple
beaic function in a form of coBina series was used to exprees the
displacement variation along the nocdal lines. The used basic function only
satigfied the frea boundary conditions with reepect to the sheering forces,
but resultsd in bending forces at the ends of ths nodal linea. In order to
completely satisfy the free boundary conditions at tha ends of the nodal
lines, edge moments: equal in magnitude and opposite in direction to the
resulted bending forces, have been applied and 1included in the analysis
through the solution of the homogenous differential equation of the plata.
The obtained results were compared with those obtained by BOWLES [11} and
the compariaon demonstrated a close agreement and indicated the validity of
the preeented technique.

METHOD OF ANALYAIS

1- 8olution of the non-homogenoue differential eguation
a) Nodal Line Finite Difference Equation

According to the Winkler assumption., the subgrade reaction intensity is
proportional to the deflection of the plate W. The intensity is then given
by the expression keW, where the constant ka, expressed in the term of
etrass per unit Jlength of deflection, is called the modulus of the
foundation or the aubgrade reaction. 1n accordance with the Winkler
agssumption, the differential aquation of the deflection of elastic isotropic
rectangular plates becomes

B(W T +2W”suw") = gq-x_ W i.e

11

YW T rz2wWw s W v oW =g (1)
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B = —_— i8 the flexural rigidity of the plate
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Fig. 1

in the application of the nodal line finite difference method for the
analysia, the plate is divided inmto a meuh of fictitious nodal linea as
shown in Fig. 1. The digplacement function st each nodal line of the mesh io
expreeeed a3 a gurmation of terme of the bagic function fitting one of the
two boundary conditions at the ends of the rodal 1inee multiplied by neodal
tine parameters. These parameters are assumed a3 single variable functions
in the direction parpendicular to the nodal linss, The diaplacament function
at any nodal line lahellad k may be written a3

"

W= Y F 00 Y (¥) )

med

For rectangular plates with two opposite free enda. the baaic function
satiafying the boundary conditions with respect to sheering forcas at the
ands of the nodal lines is a series in the form

Ym = cog iﬂ:éll y = coB k_Y (3)

‘esolving tha load into a saries fgimilar to the wueed bdamtc function and
eubstituting equations (2) and (3) into egquation (1] at any nodsl 1lins k
leads to

r [ERY] ‘ .. . r
B mzl[ x-‘r«n.h— - ZRu Prn.l+ (hm*p)Fm,k] an - 2 q-.k Ym 4)

m=1

For esach term of the basic function, oquation (4) may bhe written as

BL Ry ~ 2Pt GO ] e, )
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v

By applying the central finite difference technique, equation (35) can b¢
written in a matrix form as follows

T —4
) 1 - AX
[1 cm C: crn l]{Fn.k-lFm.k—tFm.k Fm.kv‘.Fm.kvz} B qm.k (6)

where ¢t - -(4+2V:) and c - (6+4V=+v"+pA§")
Y m ™ m o m

Equation (6) represgents the central nodal line finite difference egquation
for the different terms of the bagic function

b) Intarnal Forces

For an atastic iaotropic plates, the internal forces per unit length at
any point are given by

M =-B (W +uWu"

M s« =B (W' +pu")

=
’
)

M =B (1-u) W'
4.

Q = =-~B (W + Wy L (7)

" vad

Q = -B (W + W )

= Y2 a".
g, ~-B[w +(@vyw'] -0 -—7)
Q =--38 [w’” + (2-D) w”'] - - aH"Y )
y DY ox L

By applying the central nodal line finite difference techniqua, the internal
forces at eny nodal line k may be written ag

2 3 - .
M, o-- Eﬁ; cos Ry [0 1 ) 1 0] {4} ]
a m=1
B\l
B L e v e 014
2 . = ae
M, .x" ff;(l—») z‘vmsin ky [O 1 0o -1 0] {6-}
m! ' 3
o B Y e @ 0o ) | @
] ™
QY.k - % m= i Vﬂain hmy [ Y -1 C"’" -1 0 ] {6'"}
— s r
x, bk - :' MZI ces hrny [_1 C: 0 —C: 1 ] {6m}
— s r
e = gﬁ; E vsinky [0 -1 C: -1 0] {s.} |
a m=d
where  Cl=(2avl) |, Clm(vwl) |, 22wy L co={2+(2-vivl}

{dl\} - Frn,k-JFrn,k-lFm.k Fn,ko|rm,koz}r
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¢ Poundary Conditions

The NLFDM method requires the application of the nodal line difference
equation at @each nodal line of the plate including the edge nodal 1{nes.
Each edge nodal line dijifference equation witl introduce two additional
imaginary nodal linea outside thes plate a3 shown in Fig. 2. According to
the preacribed boundary conditions at the edge nodal lines, the parameters
of the additional nodal lines have to be expressed in terms of the edge and
the two adjacent interior nodal lines. The boundary conditions of free edge
would be as

L =0 de. (W aw Wy =0, { W (220 w'”}h -0 (9)

| ~ight exterior
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Fig. 2

Upon application of the central finite difference technique,left and right
exterior nodal line parametera can be described according to the following .
relationships :

s
m,k-q = cm Fm - F

o]

. -
in-
(9}

L -
e |
3

m, k-2

[ (107

m,kag ™ m,k m, k-1

F
m,ke2 LE-1 m,k=2 ’

2- Solution of the homogenous differential eguation

The used basic function only satisfied the free boundary conditions with
respect to shaaring forces but resulted in bending forces at enda of the
nodal 1lines. The resulted banding forcea at the enda of the nodal lines
(y=0, y=a) are 3ingle variable functions in x direction.

fx)| = M (X)) + M (x)
vre ! } (11)

GO, = M) = M ()
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where Mi(x) and Mz (x) are twa functione include ordinatee of the bending
forceas resulted from the even and 6dd terms of the uaad Dbasgic function
respectively.

Cosina meries was chosen to expresB the variation of the resulted bending
forcea in x direction.

r r
- (n-1)n -
M, () 2 P, 603 —— X 2 P,a COS H X
nai naid
v (12)
- (n-)r _ _ ¢
Hl(x! z Pia €O% —— X z P, CoT H X
n=fq LY N}
The coefficienis pin and pain would be determinad hy numerical {ntegration
techniques.

In accordance with the Winkler wassumption, the homogenoue partial
differential equation of elastic 1sotropic plates takes the form

W Tr2W Wy pw =0 113)
The 3o0lution of this equation may be expressed ag
i (n-1)m - 3 L
W e z cog ——— % Y = 2 cog px Y (14)
nfe L n w5, n n

Substitution of equation (13) into egquation {(l14) leads to the following
homogenous ordinary differential equation

!

“glm _ 2 - 4 PN | R
Y“ 2 B Y“ + (g + ATy Y 0 (15)

where A = p - g'

Genexral solutioh of this equation can bs written in the following form

Yn = Al\ YA n + BA Y: ] * c»\ Y! n * Dn Y4n ( 16 )
-n.Y -ny _
where Y - @ cog y vy t+ e cog r y .
in n n
-y Y _
Y -~ 6 3inr vy + e sin r v .
an n n
-y y _
hal n
Y‘“ - 8 Coa ry - e cos ry .
-Ay -0y _
Y =~ o sin ¥y vy — e gin r v .
%N 2] "

2 4 4 1 z - 4 2 —
26“ - /y“+x tp an /p"+k -k and ¥ = a~y

For symmetry in y direction it ig clear that Yn 18 an aveh function of y

Y =AY +B Y (17)
n " in n I

For anti-aymmetry 1in Y direction it may be concluded that.Yn ia an odd
function of v.
-

Y|'I - Cfl Y,n * DI"! Y {18)

4an
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To satimfy the fres boundary conditione for both &ghearing and bending
1orces at ends of the nodal linez, edge moments egqual) in magnitude to Mi(x)
and Mz(x) but opposite in direction wore applied. The constants An, Bn, Cn
and Dn should be determined for each term of tha function coe umx from the
boundary c¢onditicna at y=0. For the edge bending forces resulted from the
even terms of the used baaic function. we have

/’ as
M| == [ W' ¢ow 1. =-M 00

y*'ys0
A u e *
- -1 ng‘ [-y“ - vy Y.J,:a cog ¥ X * _nz‘ P, €03 M X

- . (19)
Qi =~ B[ W7 (2yw7] =0

- -B nzl[.Yg’— (2—v)p:-Y;]y=o cos p_x = O

Substituting equation (17) into equation (19) givee for esach term of the
funcrion cos pmx the following relations
P
»” x " 2 L )
An[ Yin -v Fn Y:n]y=o + Eh[ Yln -V “H Y’-“]Y=° B
, (20)

lr\]y=0 = ¢

1y 2 1 z
ALY R Y] )+ B [ Y, (2 Y

The same steps were applied to the edgs bendinuy forces resulted from the odd
terms of the basic function, obtaining

P
"noo_ 1 noo_ 2 - _2n
cn[ Yan v “n Y!r\}y=t:’t * Dn[ Ydr\ v “n Yln]yxﬂ B
’ (21)
L 2,t 1 2.,
Cn[ YSn—.(z_v)“nYSn]y=0 ¥ Dn[ de_(z_v)“n‘fin]yso - ¢
The constants A-~, Bn. C~ and D~ may expressed as
a p a
4n “n an
A, =& a -a_ a B ’ Bn a R,
in 4n 2n Bn 44n
P (22)
4 ™n In anm
C "5 5 - B . D, C.
in 4n 2 3 an

LS
=
@
™
o
1]
n

2 2 a 2 T

c (At )+n v, . a - ey, (At )
2 . 2

Aen = ‘n {n"(l‘\”‘i‘fnwz} + , {r)nvz*‘rn(l-ﬂwl)} ’

ddn =~ ‘:\ {ﬂn\"1+r“(l_\"‘)} + A {!7“(1‘\“‘1‘1‘“\“,} '

z z 2 2

b = e (1-v )-A v, . b, = v, N~y .
2 2

b, = = {ﬂn(1+w()+rnw¢} - 2 {p v, U}
b 4 a

b‘l\ - ‘ﬂ {ﬂhvz_rﬁ(l+wl)} + k {ﬂn(l*-wi)?rhwl} ‘

-3 a -1 a
2 3 ™ " -
o= (1wl . w78 cos y a and ¥, ™ @ ain r o

‘inally, deflection and intarnal forces can be calculated and addeda tp the
tolution of the nan-honogyenous differantial equation.
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NUMERICAL EXAMPLES

To demonatrate the validity of the proposed solution tachnique, analyseis
of rectangular plates on elastic foundation was carried out. For the purpoae
of comparison, two problems solved previousty by BOWLES {11) were chosen.

Example 1: A problem of rectangular spread footing pubjected to central
column load ghown in Fig. 3 wag analyzed. Due to gymmetry 41in x direction,
only half of the plate divided into a mesh of fictitious nodal lines at
aqual distancel ax =0.3 ma) wap conaidered. The analysie was carried out
uging seven even terms of the uvsed basjc function. To illustratae the affect
of the applied load area, different column dimenzions were taksan into
congiderstion. The resulta of daflection, moments M« and My at @aselected
nedes on the central lipns of gymmetry (y=~0.9 ma) and the fres adge (y~0)
woere pregented 1n tables 1 and 2. Comparison of the results of the proroBed
solution technique with those gbtained by BOWLES demonstrated a significant
effect of the applied load area, especially on the value of the moments Mx
and My at the cantral point. It should be noted that the edge moment at the
free edge (y=0) is nearly equal to zero. this indicatss the power of the
proposed golution technique for satisfying the free boundary conditions. The
data of the problem was taksn from BOWLES (11] (example 7-3 pags 222) as

follows .
{ |sso kN
Modulus of elasticity B 16]in
E = 2240873 xN/saqm O.LLTI!
= 228.49729 t/cm2
Y 8 fl
Subgrade reaction . 1.4ms
ke = 23536 kN/cum
= 2.3999184 kg/cm3 Fig. 3 §- -- A e Y
5 e PR L) - anl aw] o
Column load . . EB 1t
P = 890 kN \ I.8ms
= 90.751504 ton L% I R Rk KL IEE I IE N EEE
p . t. 2 I i e i il A c- -
oigson's ratio [
v = |15 ! — ‘1
. ' 2 ) & 5 617 8 J
Tab)e 1. Daflection v, Bendlng Homent® Hx and My at y=0.9 ms.
cotumn’ v i i 1 FO |
dimensions 90OURCE
cm q 3 L) 6 4 7 4 a 41 9
30%26 0,9420 0.93187 0.9232 0.509% 0.8944{cm
5x215 D.9424 0.9358 0.9223 0.5088 0.D6942 ' cm
w 20%x20 0.9420 0.93688 0.9233 g.90a7 0.6939|cn HLFOM
10x10 Q.9426 D.%362 0.9233 0.9084 0.8935|cm
poinl Joad 0.9443 ¢ 9353 0.9232 0.$082 6 8930|cm
point {oad 0.9433 0.937) 0.923e 0.%090 0.6946| cm HOHLEB(!II|
10x30 19.491 9.248 3.42a 0.723 g.22t|{e.m
25x25 20.417 9.614 31.440 0.715 0.222|t.m
Mx 20x20 21.244 $.463 J.407 0.700 0.222|t .o MLFOM
10%1D 23.132 9.116 J.348 0.698 0.221|L.a
polnl load 24 696 B,748 1.302 0.692 D,218(t.m ‘
point load 25.243 8.649 2.8%9 0.206 0.000|t.m |DOWLES(11]
247.503| 04.614| 720 D42 3.003 0.000|kH.m
1Dx 30 15.840 ?.910 5.563 3.50% 2.922 t.m
23x25 17.113 10.106 5.600 3.820 2.933 (e
My 20x20 16 393 10 236 5.618 3.623 2.934|t.m NLFDM
10x1D 14,714 16,204 5 592 1,602 2.914|t.m
point load 12.269 10.070 5.%05 3.53) 2.876(t.m
polnt loaa 20.4534 11.445 §.417 4,104 2.30Dt.m |BOWLES[!1]
202.331 | 112.243 62.901 40.23) 32.264|XN.m
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Tahle 2 Da(lection «, Bending Fomants Mx and Hy st ¢=0.0 ms.

[ columa « i P4 t [ S [ S |
dimenajans SOURCE
<o L 5 1 [ | 1 d t 9
10%30 4,924 0.9221 Q.91 g.9ca7 0.8871 cm
15x23 0.9257 0.9222 0.9130 0.5006 0.BA69 [cm
w 20%20 0.9250( o,9222] 0.y130! 0.90031 0.0067 cm NLFON
1D%t0 0.524¢1 0.%224 0.9130 G. 5GD3 0.8062(cm
rojnt toad 0.9%EA 0,9227 0.%110 g.9¢01 Q.0058 |cm
point load a.5217| 0.%211| 0.9120| 0.8997| 0.8B64|lcm (DOWLES{1H]
20x30 9.319 7.506 4.3%1 1.793 0 %63|t.m
23x25 9.433 7.582 14,414 1.805 0.56B|t.m
It 20% 20 9.336 7.697 4.435 1,813 0.570|t.m HLFD
10x10 9.822 7.608 4.475 1.823 0.272(t.m
valnt load 10.0008 7.920 4 516 1.d431 0.373t.m
paint loed 9.837 7.650 1 119 1.6%7 0.000(t. m |DOWLEI(11]
$4.50%) 75.106| 42.3549| 18,249 D.DDDJXR.m
39830 »o_onzw -¢.823| -0.012 o DO? 6.081 t.m
23% 3% ~0.00)3 ~0.021 ~0.012 0.007 0.082|t.m
ny 20x18 -0.004| -g.018| - 611 0.007 3.663 't.m NLFOM
10x10 0.000)] -0.008] -0.009 0.0bs 1 060 t.m
patnt laad o.u0i( -gv.ag2l -c.ano a.008 ﬂ;dS9\L.T_J
eaint laad a.e4a g aoa G 600 4.040 0.000 |t m [BOWLFS(11]
fn.00cC a.000 0.Lo0 u,ond 0.000(kR m

EYAMFLE 2: A problem of rectangular raft foundation gubiected to 12 column
loads shown in Fig. 4 was analyzed. The raft wag divided into a meah of
fictitiouvs nedal linmea in x direction at egual distance ( &x=3.7 ft,21 noda)]
lineg) . The analyzis wag carried out using fourteen even and odd tsrms of
the basic function. Ueing the propoged molution technique., 8 final Bguare
matrax hoving a band width egual to 5 stored in a rectangular matrix with
the dimenaion 21x5 was solved. At first, the vproblem was opolved by
conaidering a patch column }oads (15x15 in) and gsecondly by assuming a point
coluinn loads. The results of the moments Mx and My at selected nodes on the
nadal lineg 4. 8 and 11 wors presented in tabkleg 3, 4 and 5, The resulta are
pregented wusing the same unites and sign convention considerad by HOWLEZ
(+ 3ign of moment indicates tension at the upper esurface of the raft).
BOWLES congsidered the column lcaids as point locads and divided the raft into
a mesh of 21x15 nodes. A5 a remults. a final fully populated square matrix
with the dimen3ion 315x315 was so)lved. Comparison of the obtained results
with thoge obtained by BCWLEY shows a gaod agreement. The data of the
problem was taken from HOWLES[11l] (example 7-2, paga 219) a3 follows

All column dimensiona
are 15x15 in

N =T ol T =-

Modulua of elasticity
E = 468000 Kaf

B R

Subgrade reaction
ke = 36 Kcf

Raft thickneas
t = 3.833 ft

Poisaon's ratio
v = 15

Fig. 4

|
AR 2% 1
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Table 3. Bendlng Momeats Mx and Hy at nodal line No 4
Moment Mx kip.fuv/It Momont My klp.It/rft __1
Point|Distance
y {t |patch 1oad|point load|point load|pateh }oad|polnt load|point loed
13 12 53.633 47.490 30.206 - 0.006 - 0.006 0.000
14 a3 46.147 40.013 40,033 10,119 16.079 17.82D
13 a6 39.95) 33.812 34.042 34.072 34.017 33,780
12 3 a5.764 29.6J0 J0.0U9 45.631 45.343 43%.200
) 30 13.824 27 .701 20.272 31.617 31.463 31.160
10 27 J3. 049 37.738 28.340 33.400 32.21) 31.670
9 24 34,938 28 .86) 30.140 49.95% 49.739 4g.890
8 21 35.53) 3%.467 .160 47.913 17.664 A3, 540
7 10 4.3 28.433 29.930 46.313 A8.2608 47.230
6 15 32.948 26.633 20.730 49.648 49 .444 419 .000
3 12 32.2346 26.218 27.890 48.021 47 .969 47.640
4 ? J3.364 27.437 29.240 4]1.786 41.600 41.320
3 6 J6.B3] n.723 32.68A0 30.690 30.620 20.310
2 J 42.049 35.901 37.D00 16.001 15.932 15.910
1 o] 8. 41t 42.275% 416 .700 0.000 - 0.001 0.000
SOURCE HI.FDH DOWLFS(171) HLI DM BOWLES|11])
Tab)e 4. Rending Momenls Hx and My at nodal line tlo &
Moment HMx Hip.f(t/fL Moment My kip.ft/ft
Point|Distance
y ft patch Joad|point load|point load|pateh load|point load|point load
15 42 -120.846 -1286.2680 -117.610 2.114 2.149 0.000
14 39 - 768.784 - 83.435 - 680.170 15.849 16.564 18.450
13 el - 44.623 - 19.106 - 47.720 52.101 52.57 50.200
12 33 - 27.409 - 21.980 ~ 20 400 64,137 54,230 53.810
11 30 - 20.952 - 25.142 23 BAC 60.220 60 . 224 7.730
10 27 - 23 319 - 27.020 - 26 050 63 523 63,406 62.600
9 29 - 35 777 - 10.27) - 32.230 11.51] 41.657 44,580
| 2] - 1% 450 - 54.297 - 57 24D 4.048 3.0%95 5.410
7 10 - J4.113 - 38.612 - 33.520 39.246 39.345 42.2020
6 15 - 19 770 - 24.238 - 22 270 59.232 39.166 58.530
3 12 - 15 0G5 - 15 300 - 17 6310 62.306 62.272 61.900
4 9 - 16,120 - 22.61) - 20 000 57 677 37 705 52.310
) [ - 30.250 — 34.736 - J3.000 46 087 46,334 44.5%0
2 ] - 56.152 - 60.000 - 50.320 15.01? 15.561 17.160
1 0 - 60.522 - 91.604 - 68 650 1.662 1.709 0.000
SOURCE NLFDH BOWLES(111 NLFDM POWLES([11)
Table 5. Dending Moments Mx and My at nodal )1ine No 11
Moment Mx kip.fr/fe Moment My kip.ft/ft
Point|Di1=tance
y (L patch load|point {oad|paint load|patch load|point load|polnt load
15 12 2B.946 29.110 29_210 - 0.693 - 0.706 0,000
14 a9 21.430 21.506 19.040 19.096 19.302 18.060
13 a6 15.9Q2 13.929 13.580 17.06) 37.408 35.910
12 aa 13.012 1J.028 10.740 $0.256 30.650 30.100
11 10 12,802 12.903 10.630 56.352 36.946 54.300
10 27 14.933 11.977 12.500 56 .300 36.664 33,700
9 21 17.5as 17.908 15.02a 32.024 32.639 33,090
B 21 19.733 19.a81% 18.110 49.380 49.680 47.220
7 18 19.023 19.077 16.950 30.419 30.716 4%.2J0
5 15 17.04} 17.077 149.770 32.032 53.161 52.400
3 12 15.010 15 035 13 560 32,181 32.327 52.040
4 9 16. 481 16.404 14,300 45.650 46.227 45.870
3 6 19.430 19.481 17 330 21.657 J33.%42 33.720
2 3 24,833 24,700 22.430 172.19 17.468 17.110
1 0 J1.485 31.614 31.730 - 0.547 -~ 0.336 0.000
SOURCE HLFDM BCALES(111 NLFDH BOWLES|11]
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CONCLUSION

In this 1avestigation, analysis of rectangular plates with free boundary
conditions supported on elastic foundation was achieved by uging the nodal
line finite difference method. A =2imple trigonometric basic function in the
form of cosine serisps was used to express the di=placement varijiation along
the nodal lines. The used bagic function heas the advantage of duncoupled
system of the static equilibrium equations. The basic function haz the
property to satiafy the free boundary conditions with respect to sghearing
forces, but resulted ir bending forces at the ends of the nodal lines. In
order to satisfy the free boundary cond:itions with reppect to the bending
forces at the ends of the nodal 11nes, edge moments vqual in magnitude and
opposite in direction to the reauited bending forces were applied. To
determine the effects of tha applied edge moments, it would be easy to
aglve the homoegenocus part of the differential equation of the plate, A
comparison of the obtained results with those available from the finite
difference solution of BOWELS shows a close agreemant.

NOTATIONS
W = transverse deflection.
-1 = length of the necdal lines.

L, a +~ dimensions of the plate,

Ax = constant distance between the nodal tines.
B = modulua of eiasticity.

t = thickness of the plate.

v = posgsion’'s ratio.

B = flexural ragidity of the plate.

ke = subgrade resction of the soil,

Fn.k = nodal line parameters.

Y = basic functaoen.

q = load intensity.
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