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Abstract: An analytical study for the quasi-steady flow caused by a spherical 

micropolar or viscous fluid droplet translating at a concentric position in a second 

immiscible micropolar or viscous fluid within a spherical cavity is presented. The 

droplet translates along a diameter connecting their centers under the conditions of low 

Reynolds numbers. To solve the Stokes equations for the velocity fields inside and 

outside the droplet, general solutions are obtained in terms of spherical coordinates 

based on the concentric position.  For the cases of the viscous droplet within a 

micropolar and micropolar droplet within a viscous fluid, a boundary condition related 

to vorticity with microrotation is used; while for the case of a micropolar drop within a 

micropolar fluid, continuity of microrotation and tangential couple stress are used. The 

normalized drag forces acted on the droplet for the different cases are represented 

through graphs for various values of relative viscosity, radii ratio of droplet and cavity, 

and the parameter that connects the vorticity with microrotation. The wall-corrected 

drag force is found to be a monotonic increasing function of the ratio of drop-to-cavity 

radii. The present work is motivated by its potential applications such as raindrop 

formation and rheology of emulsion.   

keywords: Micropolar flow. Droplets and bubbles. Low Reynolds numbers. Spherical cavity.  

1.Introduction

The area of moving drops and bubbles exists 

widely in nature. In nearly every situation, 

these fluid particles, which may lie within a 

continuum of another fluid, have an important 

significance on the physical behavior of the 

system. For instant, clouds are natural 

assemblages of tiny water droplets which 

coalesce and lead to rainfall. In addition, in 

industrial systems, such as in some chemical 

reactors, drops, and bubbles commonly occur 

as carriers of both reactants and products [1]. 

The earliest work in the regime of low 

Reynolds number is given by Stokes [2] who 

studied the motion of a solid spherical particle 

translating into a viscous fluid. One of the 

important parameters which have been 

evaluated is the drag force acting on the particle 

by the surrounding fluid. Naturally, this basic 

solution leads to the study of the motion of 

fluid spheres and particles of other shapes.   

The classical development after Stokes [2] was 

the solution of the slow motion of a fluid sphere 

given by Rybczynski [3] and independently by 

Hadamard [4]. They assumed that the velocity 

and the tangential stress are continuous at the 

interface of the fluid sphere and found the drag 

force exerted on the fluid sphere by the 

surrounding fluid. Extension of [3] or [4] to 

micropolar fluid was studied by Niefer and 

Kaloni [5]. The interfacial stresses acting at the 

drop surface tend to deform it.  However, if the 

motion is sufficiently slow or the drop is small 

in size, the drop will in the first approximation 

be spherical. The distortion of the spherical 

shape of a droplet is studied in the literature by 

some authors e.g. [6–8]. 

In many studies in the literature under low 

Reynolds number conditions, drops and 

bubbles are not isolated and it is important to 

find out if the presence of neighboring drops 

and/or boundaries significantly affects the 

migration of a drop. The motion of a single 
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particle embedded in a fluid only represents the 

case of a short distribution phase. The drop 

interaction problems have been studied widely 

by various exact, asymptotic, and numerical 

methods [10–24]. The system of a spherical 

drop within a spherical cavity can be viewed as 

an idealized model for oil or water droplets in 

the rock of the oil-containing formation 

composed of connecting spherical pores [25]. 

Faltas and saad [26] investigate investigate the 

creeping flow problems of a viscous droplet 

moving perpendicular to an impermeable 

bounding plane surface within a micropolar 

fluid and the motion of a viscous droplet within 

viscous fluid. Saad [27] studied the Stokesian 

flow of a spherical-shaped droplet which is 

halfway immersed in a semi-infinite phase of a 

micropolar fluid. 

The well-known Navier–Stokes equations 

assume that the fluid particles do not have any 

internal structure.  However, fluid particles may 

discover some microscopical effects such as 

turnover, constriction, or protraction for several 

fluids such as polymeric hang, and brute blood. 

That is the interior body should be considered 

for fluids whose particles have compound 

shapes. A well-accepted theory that considered 

the internal microstructure is the micropolar 

fluids which were initiated by Eringen [28-31]. 

In this theory here, specific particles can swirl 

independently from the rotation and locomotion 

of the fluid as a whole. Due to the above 

considerations, a new variable that represents 

the angular velocity of fluid particles and a new 

equation governing this variable should be 

added to the classical model. Ferrofluid is 

considered as a micropolar fluid because it 

consists of a stabilized colloidal suspension of 

Brownian magnetic particles in a non-magnetic 

liquid host [32]. The granular flow is 

considered also a micropolar flow because it 

has microstructure and rotation of particles [33-

36]. Hayakawa [33] concluded that the 

theoretical study of certain boundary value 

problems agrees with relevant experimental 

results of granular flows. 

Another class of microstructure fluids is the 

microstretch fluids in which each material 

volume element contains microvolume 

elements that can translate, rotate, and deform 

independently of the motion of the macro 

volume elements. Therefore, in microstretch 

fluids, material points are considered to stretch, 

expand, or contract, in addition to rotating 

about their centroids. This type of fluid is also 

known as Eringen fluids or micropolar fluids 

with stretch [37].  

The Stokes axisymmetric microstretch 

streaming flow problem past a stationary 

viscous droplet and as well as the related 

problem of a viscous streaming flow past a 

stationary microstretch fluid droplet are studied 

by [38]. The droplets are considered either 

perfect spherical or deformed spherical in 

shape. For these flows, the microstretch scalar 

function is uncoupled from the stream function 

and microrotation component function. 

The study aim of the problem is to find out 

the boundary effect on the quasi-steady motion 

of the drop. This article contains three 

hydrodynamical problems: (a) the quasi-steady 

translation of a classic viscous spherical drop in 

the concentric placement of a spherical cavity 

filled with micro-structure fluid of micro-polar 

type, (b) the quasi-steady translation of a 

micropolar drop in the concentric placement of 

a spherical cavity filled with viscous fluid, (c) 

the quasi-steady translation of a micro-polar 

drop in the concentric placement of a spherical 

cavity filled with micro-polar fluid. The fluids 

inside and outside the droplets are immiscible. 

Analytical solutions are found for each 

problem. Continuity of velocity and tangential 

stress is continuous at the surface of the droplet 

in addition, the no slip conditions and no spin at 

the inner surface of the cavity are used. The 

spin-vorticity relation is used in problems (a) 

and (b) at the surface of the droplet; while in 

problem (c), the continuity of microrotation and 

tangential couple stress are considered. 

2. Micropolar Governing Equations 

The equations governing the steady flow of 

an incompressible micropolar fluid in the 

absence of body forces and body couples as 

given by Eringen [29], under the conditions of 

low Reynolds numbers, are 

0,q    (2.1) 

  ,p q      (2.2)  

 2 ,q       (2.3) 

where , ,q   and p are the velocity vector, 

microrotation vector, and fluid pressure at any 
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point, respectively.   is the viscosity 

coefficient of the classical viscous fluid and  

is the vortex viscosity coefficient. The 

remaining viscosity coefficients  ,   and  are 

gyro-viscosity coefficients. The constitutive 

equations defining the stress tensor   and the 

couple stress tensor m  are given by 

   1
2

2 ,p     Δ I  (2.4) 

= ,Tm    I  (2.5)   

where I is the unit tensor, ε is the unit 

alternating tensor,  1
2

q    is the vorticity 

vector and  Δ  is the rate of deformation tensor, 

defined as 

 1
2

,Tq q  Δ  (2.6)  

Here the superscript T refers to the 

transpose of a tensor.  The study is considered 

under the set of low Reynolds numbers of 

micropolar fluid. 

3. Differential Equation Satisfied by the 

Stream Function   

Let  , ,r   be spherical coordinates with 

corresponding  , ,re e e 
unit vectors. For an 

arbitrary axisymmetric particle translating 

steadily in an incompressible micropolar fluid 

along its axis of revolution, the velocity and 

microrotation vectors are of the form 

   , , , .r rq r q e q e r e          (3.1) 

With the help of equation (2.1), we can find 

the velocity components in terms of the Stokes 

stream function  as 

2

1 1
, .

sin sin
rq q

r r r


 
  

   
  (2.1) 

Inserting (3.1) and (3.2) into the field 

equations (2.2) and (2.3), we 

  2

2

1

sin
E

r


    

 
 

 sin 0,
sin

p

r r

  
   

  
  (3.3)   

  21

sin
E

r


   

 
 

  0,
p

r
r

 
   

 
   (3.4)   

 2 2sinE r E     

 2 sin 0,r      (3.5) 

where 

2 2 2
2

2 2 2

1
, cos .E

r r

  
    
 

  (3.6) 

Elimination the pressure p and 

microrotation  from (3.3) - (3.5), we obtain 

 
 

 
4 2 2 2

2
0, .E E

  
   

  
 (3.7) 

Let 

1 2 ,      (3.8) 

where 

 4 2 2

1 20, 0.E E      (3.9) 

Therefore, the microrotation component can 

be expressed in terms of the stream function as  

 2 2

1 2

1
2 , .

2 sin
E m m

r

  
     

 
  (3.10) 

It should be noted that, the part of solution 

1  represents the solution of classical viscous 

fluid. The regular general solutions of the 

equations in are as follows: 

   ( 2) ( 1) ( 3)

1

2

,
n n n n

n

n

n n n n
A r C r B Gr D r

   







       (3.11) 

      1 1
2 2

2

2

,n n nn n
n

r F I r E K r G


 


     (3.12) 

where  ,n nI K are the first and second kind 

modified Bessel function of order n , 

respectively, nG  is the Gegenbauer first kind 

polynomial of order n and degree 1
2

   ; 

, , , , , , 2n n n n n nFD EA B nC  are unknown 

constants. 

4. Motion of a spherical viscous droplet in 

spherical cavity filled with micropolar fluid 

The movement of a spherical particle or 

droplet at the instant it passes the centre of a 

spherical cavity is of large significant as a 

leader to study the wall effects in the motion of 

a single particle or drop. Also, it gives a model 

of interactions between particles or droplets in 

unlimited multi-particle systems. An early work 

for Newtonian fluids was given by 
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Cunningham [39] for the quasi-steady motion 

of a solid spherical particle internal concentric 

spherical cavity filled by a viscous fluid.   

Haberman and Sayre [40] give the analogous 

solution for a liquid inner sphere. In both cases 

the outer container is assumed to be rigid, so 

that fluid adheres to it. 

 
Fig. 1 Concentric spheres in relative motion. 

Here, we assume the motion of a viscous 

spherical droplet of radius a  at the instant it 

passes through the spherical cavity centre of 

radius b  full of a micropolar fluid. The drop is 

moving with uniform velocityU , in the 

direction of positive zaxis, at the instant it 

passes the cavity centre, which is at sleep, see 

Fig.1. We must distinguish among the internal 

motion and the external motions. Let  be the 

stream function for the micropolar fluid inside 

the cavity and outside the droplet a r b  and 

  be the stream function of the viscous flow 

inside the drop r a . The twain fluid phases 

are immiscible. The stream functions satisfy the 

following differential equations:  

 4 2 2 0,E E a r b      (4.1) 

4 0,E r a    (4.2) 

To complete the formation of this model, the 

conditions of the boundary at the internal  

surface of spherical cavity and at the interface 

among the  viscous drop and the micro-polar 

fluid phase has to specified. 

At the internal surface of the cavity ( r b ): 

Since the cavity is impervious, then 

0,rq r b   (4.3) 

We consider the no slip and the no spin 

boundary conditions at the internal surface of 

the cavity 

0,q r b    (4.4) 

0, r b    (4.5) 

At the interface of the droplet ( r a ): 

Since the twain fluid phases at the viscous 

drop interface and the micro-polar fluid 

enviroment it are immiscible, then no mass 

carry across the interface, that is the normal 

velocity components, on both sides together, 

should vanish. It is further considered that the 

tangential velocity is continuous across the 

interface. If we consider that the usual balance 

theory of interfacial tension is viable to the 

present model, the only one effect of interfacial 

tension is making non-continuity in the normal 

stress through the interface. Therefore, the 

duration of an interfacial tension does not, 

therefore, give the tangential stress, at the 

interface; hence, the tangential stress should be 

continuous at the interface. In addition to the 

above conditions, we shoud assign a boundary 

condition concerning the micro-rotation 

component of the micro-polar fluid phase. The 

almost suitable physical can frame down these 

circumstances is the micro-rotation of the 

micropolar fluid outside the drop is 

proportionate to the vorticity of the viscous 

fluid inner the drop [39]. The constant s  which 

connects these quantities is called the 

coefficient of spin; it depends one and only on 

the nature of the twain fluid phases, and it 

varies from zero to one. When 0s  , the micro-

elements adjacent to the interface are incapable 

to rotate and when 1s  , the vorticity of the 

viscous fluid phase equals  to  the micro-

rotation of the micro-elements at the interface. 

Moreover, at the drop centre, the components 

of the velocity should exist. The above-stated 

boundary conditions physically may be framed 

mathematically as follows: 

cos ,r rq q U      (4.6) 

,q q 
   (4.7) 

,r rt t 
  (4.8) 

,s     (4.9) 

0 0
lim , lim exist.r
r r

q q
 

   (4.10) 

Appropriate solutions of (4.1) and (4.2) that 

are compatible with the imposed boundary 
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conditions and   with the help of (3.11) and 

(3.12) are given, respectively, by 

      
3 3

2 2

2 4 1

2
,FI r EK r GAr Cr Br Dr



       (4.11) 

   2

2

4 ,Lr N Gr    (4.12)  

where   21
2 2

sinG    . To satisfy the 

boundary conditions, we need the following 

hydro-dynamical expressions:  

    
3

3 3
2 2

2

2 3 1

cos ,

rq A Cr Br Dr

r F r rEI K

 





   









 

 





  (4.13) 

    
    

1 3
2 2

1 3
2

3

3

2

2

2

2 31
2

1

2 4

sin ,

q

E

rI r I r

rK

A Cr Br

Dr Fr

r r K r










 


 


 
 

  

 


 



 (4.14) 

    
1

3 3
2

2 2

21
2

2

5

sin ,

Cr Dr

m r KFI rEr





 









 

 


 (4.15)
  

 

    
    

2
3 1

2

5

5
2

2

3 1
22

41
2

3

3

2 3 3

sin ,

rt

K r

Cr Br

Fr I r rI r

r K rEr










 


 


 
 





    






(4.16)
  

 2 cos ,rq L Mr       (4.17) 

 22 sin ,q L Mr
       (4.18) 

3 sin ,rt Mr
     (4.19) 

5
2

sin .Mr        (4.20) 

Inserting (4.13) - (4.20) into the boundary 

conditions (4.3) - (4.9), we obtain a set of 

simultaneous linear equations determining the 

unknown coefficients  , ,, , , , ,FA C ED LB M : 

    2
3 3
2 2

3

2 3 1

0,

A Cb Bb Db

b FI b bKE

 





 













  (4.21) 

    
    

3
2

3
2

1 3
2 2

1 3
2 2

2 3 14

0,

A

I b I b

K K

Cb Bb Db

Fb b

Eb b b b

 












  

 

 


 (4.22)  

    3 3
2 2

1
2

2

2

5

0,

Cb Db

m b F EI bb K








 




 (4.23)
  

    3

3
2

3
2 2

2 3 1

2 0,

A

a

I a

Ca Ba Da

a F E a

L M

K

 









  

 

   

   (4.24) 
 

    
    

1 3
2 2

1
2

3
2

2

3

3
2

2 3 1

2

2 4

2 4 0,

A Ca Ba Da

Fa

E

M

aI a I

K

a

a a

L a

Ka a

 










 



  

 

   

 (4.25) 

    2
1 3

2

3

2

2 3 1

,

A

I

Ca Ba Da

a F E Ua K a

 








  

   
 (4.26)  

    
    

5

3 1
2

5

2

3
2

2

1
2

2

43 3

3

3

3 0,

I a aI a

K a a

Ca Ba

Fa

Ea

a

aK

M









 

 

   











   (4.27) 
 

    3

1

3
2 2

2

2

2

5

5 0,

Ca Da

m a FI Ea K a

sMa













 

  

 (4.28)
  

where
2 2

, .
2 2 /

   
    

     
 

The hydrodynamic drag force exerted on the 

viscous droplet is given by [42, 43] 

 2 2 .F D    (4.29) 

The expression (4.29) of the resultant drag 

force depends on the constant D  which will be 

obtained from the solutions of the above system 

of equations. Since the values of the constant 

coefficients are lengthy, we record here only 

the value of D , 

3

13
,

2

c U
D





 (4.30) 

where 
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    

 

 
3
2

1 3 8 4 7 7 12 8 11

3 12 4 11

2 21
4 5 1 835

2 2 3

5

2

c c c c c c c c

s c c c c

ma c c c c c


  



 


 

   



   

 

    

 

    

3
2

9 5 12 4 9 1 12

2 21
1 7 3 55

5 11 7 9 1 1 3 9

4

1

2

,

3 5

2

2 3 5

cc c c s c c c c

ma c c c c c

c c c c s c c c c







   



 



 



 

 


 


          

   

 

 

   

 

 

   

 

 

3
2

3
2

3
2

31
1 2 7 12 8 115

2 21
8 9 5 125

5 11 7 9

31
5 6 3 12 4 115

2 21
4 9 1 125

1 11 3 9

31
9 10 3 8 4 75

2 21
4 5

4

1 85

1 7 3

4

3

3

4 5

3

c c c c c c c

ma c c c c c

c c c c

c c c c c c c

ma c c c c c

c c c c

c c c c c c c

ma c c c c c

c c c c

















 





 
  






 

 



 

 

 



 























 

Here , 1,2,...,12ic i  , , 1,2,3,4i i  , 1 2,    

are defined in Appendix A and 1c ba . 

For compare, the drag force F acting on a 

spherical viscous drop in an unlimited micro-

polar fluid is found to be [5]  

    

     

6 2 1 3 2
.

6 2 1 3 2 5

Ua a
F

a s


      


      
  (4.31)  

The wall-correction factor /K F F  is 

defined as the ratio among the drag in the 

presence of the cavity and the drag in an 

infinite medium: 

     

    

3

1
6 2 1 3 2 5

.
2 2 1 3 2

a s c
K

a

           


         
 (4.32)  

For Newtonian fluid expression (4.32) 

reduces to the result given by Happel, and 

Brenner [44], 

    

        

52

3

3 5 69 5 92 2 2

3 4 3 2 4 3

1 1
,

1 1

c
K

c c c c

      


              

  (4.33)   

where /c a b . 

Some special cases of (4.33): 

(1) Rigid sphere ( ): 

5

3 5 69 5 9
4 2 4

1
,

1

c
K

c c c c




   
 (4.34) 

(2)Fluid sphere of vanishing viscosity ( 0 ): 

53
2

5 63 3
2 2

1
,

1

c
K

c c c




  
    (4.35) 

(2) Fluid sphere with viscosity equal to that 

of the external medium ( 1  ): 

3 515 5 3
8 4 8

1
.

1
K

c c c


  
  (4.36) 

5. Motion of a spherical micropolar droplet 

in spherical cavity filled with viscous fluid 

For the reverse problem that is when a 

micro-polar spherical drop at the instant it 

passes through the centre of a spherical cavity 

filled with a viscous fluid, the stream functions 

satisfy the following differential equations 

4 0,E a r b      (5.1) 

 4 2 2 0,E E r a        (5.2) 

where 
 

 
2

2      
 

     
.  This problem 

subject to the following boundary conditions: 

0,rq q r b    (5.3) 

cos ,r rq q U r a      (5.4) 

,q q r a 
    (5.5) 

,r rt t r a 
    (5.6) 

,s r a     (5.7) 

0 0 0
lim , lim , lim exist.r
r r r

q q
  

    (5.8) 

Appropriate solutions of (5.1) and (5.2) that 

are compatible with the imposed boundary 

conditions and   with the help of (3.11) and 

(3.12) are given, respectively, by 

   2 4 1

2 ,ˆ ˆ ˆ ˆAr Cr Br D Gr     (5.9) 

    3
2

4

2

2 ˆ .ˆ ˆ rLr Gr N rIM      (5.10) 

The following hydrodynamical expressions 

are required:  

2 3 1ˆ ˆ ˆ ˆ cos ,rq A Cr Br Dr       
 

 (5.11) 
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2 3 11
2

ˆ ˆ ˆ ˆ2 4 sin ,q A Cr Br Dr 

  


 


   (5.12) 

1 4 21
2

ˆ ˆ ˆ ˆ2 7 2 sin ,Ar Cr Br Dr        
 

(5.13) 

 4ˆ ˆ3 3 sinrt Cr Br 

      (5.14) 

  
3
2

1
2

2ˆ ˆ cos ,ˆ
rq L Mr rN I r


      (5.15) 

    
3
2

1 3
2 2

21
2

ˆ ˆ2 4

nˆ si ,

q L Mr

r rN rI r I









    

  



 




 (5.16) 

 
1
2

3
2

21
2

ˆ5 sin ,ˆMr Im r N r


     
 

 (5.17) 

 

    3 1
22

5
2

1
2

ˆ2 3

sin ,ˆ

r

N I r rI r

t Mr

r









   

     





 


 (5.18) 

where
 

 
2

2      


     
  and  m

   
 


. 

Inserting (5.11) - (5.18) into the boundary 

conditions (5.3) - (5.7), we obtain a set of 

simultaneous linear equations determining the 

unknown coefficients  ˆ ˆ ˆ ˆ ˆ ˆ, ˆ, , , ,,A C B D L M N : 

3 5 2ˆ ˆ ˆ ˆ 0,Ab Cb B Db      (5.19) 

3 5 2ˆ ˆ ˆ ˆ2 4 0,Ab Cb B Db     (5.20) 

 
3
2

3
2

2 3 1

2

ˆ

ˆ

ˆ ˆ ˆ

ˆ ˆ 0,

A Ca Ba Da

a L MaN I a

 







 

  

   


 (5.21) 

    
3

1 3
2 2

2

2 3 1

2

ˆ ˆ ˆ ˆ2 4

ˆ ˆ2 4 0,N̂ aI

a

a I

A C Ba Da

a a L Ma

 







   

  

   



 (5.22) 

5 323ˆ ˆ ˆ ˆ ,Aa Ca B Da Ua       (5.23) 

    3

5
2

1
22

4ˆ ˆ ˆ3 3 3

3 0,ˆ

Ca B

aaN I

a Ma

a I a











    

    


  (5.24) 

 
1

2

2
3

2 1

4 2

ˆˆ5 2

ˆ ˆ ˆ

ˆ

7 2 0,

Ma m a sAa

sCa

N

sBa a

a

D

I

s

 

 

 



  

   

 (5.25) 

where
2 2

, .
2 2 /

  
     

          
 

The hydrodynamic drag force exerted on the 

micropolar droplet is given by [42] 

ˆ4 .F D    (5.26) 

The constant D̂  will be obtained from the 

solutions of the above system of equations, we 

record here only the value of D̂ , 

3

1ˆ ,
c U

D





 (5.27) 

where 

  

   

2 3

2 6 1 7

3 4 7 5 6 3 2 6 1 7

2 1

,

m a c c c c c

c c c c c c c c c c




 

     

   

 

 

  

 

3
1 72

2 3

2 3 7

3 33
3 7 2 5

2

2

2 3

3 2 1

.25 2

c

m a c sc c c

c c c c c c











 

    

      

  




 

Here , 1,2,...,7ic i  , defined in Appendix B. 

For compare, the drag force F
 acting on a 

micropolar drop in an unlimited viscous fluid is 

given by [5] 

     

     

2 2

2 2

3 2 15 1
4 ,

2 1 5 3 2

a a
F Ua

a a s


                 
  

                 

(5.28) 

where  3/ tanh 3/ .a a       

The wall correction factor K    for this case 

is given by 

     

     

32 2

1

2 2

2 1 5 3 2
.

3 2 15 1

ca a s
K

a a

                  
 

                   
(5.29) 

6. Motion of a spherical micropolar droplet 

in spherical cavity filled with micropolar 

fluid 

Here, we consider the motion of a spherical 

micropolar droplet of radius a  at the instant it 

passes through the spherical cavity centre of 

radius b  filled with a micropolar fluid. The 

drop is moving with uniform velocityU , in the 

positive zaxis, at the instant it passes the 

centre of a cavity which is at rest. Again, the 

two fluid phases are immiscible. The stream 

functions satisfy the following differential 

equations: 

 4 2 2 0,E E a r b      (6.1) 

 4 2 2 0.E E r a      (6.2) 

The solutions of (6.1) and (6.2) are 

respectively as follows 



  

Mans J Mathematics Vol. (39).2022. 8 

     3 3
2 2

* * * *

*

14

2

*

2

,F I r E r

A r C r B r D

G

r

K

 



   



  







  (6.3) 

    3

2

* 2 * 4 *

2
,L r M r N r I r G      (5.27) 

where
* * * * * *, , , , , ,, ,A C B D MF L NE are nine 

constants’ coefficients to be determined. The 

boundary conditions are as follows: 

At the internal surface of the cavity   r b  

The no mass flux, no slip and the no spin 

require 

0.rq q     (6.5) 

At the interface of the drop  r a : 

cos ,r rq q U     (6.6) 

,q q 
   (6.7) 

.r rt t 
   (6.8) 

In addition, since we have in this case two 

microstructure fluid phases, the boundary 

condition (4.20) or (5.7) should replaced by the 

continuity of microrotation at the surface of the 

droplet, that is  

.    (6.9) 

Moreover, the continuity of the tangential 

couple strass has to be added to complete the 

set of boundary conditions to determine the 

unknown constants coefficients uniquely, i.e.  

.r rm m 
   (6.10) 

Finally, the conditions of boundedness of the 

velocity and microtation at the centre of the 

drop must be added, 

0 0 0
lim , lim , lim exist.r
r r r

q q
  

    (6.11) 

The expression of the tangential couple 

stress component is given by  

.rm
r r



 
  


   (6.12) 

The following hydro-dynamical components 

are needed to satisfy the boundary conditions:  

    
3
2

3 3
2 2

* * 2 * 3 * 1

* * cos ,

rq

r

A C r D

F I r E

r

r K

B r  








    

  
 

(6.13) 

    
    

1 3
2 2

3
2

3
2

1 3
2 2

* * 2 * 3 * 11
2

*

*

2 4

sin ,

F rI r I r

E rK r

q A C

r K r

r B r D r

r

 















   




 
 



 

(6.14) 

    3 3
2 2

1
2

* * 21
2

2 * *

5

sin ,I

C r D

m F r K rr E

r 








  

  


(6.15) 

 

    
    

2
3 1

22

3 1
2

5

2

5

2

* * 41
2

*

*

2 3 3

sin ,

3

3

rt

F I r rI r

E K r

r

K

C

r

r

r

r

B

r













 


 
 

    





 

(6.16) 

   

      
      

1

3

2

3

2

3

2 2

1 3

2 2

* * 31

2

2 *

2 *

25

sin

2

,2

r
m

F rI r I r

E rK r

C D

r

r r

m

m K

r








    

   

    

 











 









(6.17) 

  
3
2

1
2

* * 2 * cos ,rq L M r rN I r


     (6.18) 

    
3
2

1 3
2 2

* * 21
2

*

2 4

sin ,r

q L M r

rN rI r I









    

  


 




(6.19) 

 
1
2

3
2

* 2 *1
2

5 sin ,r N I rM m r


     
 

(6.20) 

 

    3 1
22

5
2

*1
2

*

2 3

sin ,

r

N I r rI r

t M r

r









   

      





 


(6.21) 
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2

1
2

3
2

*1
2

2 *

2

5

sin ,

rm

r r

r

L

m r

I

N I






      


   


      
 


 



   (6.22) 

Applying the boundary conditions (6.5) - 

(6.10), we obtain a set of nine simultaneous 

linear equations for determining the nine 

unknown coefficients
* * * * * *, , , , , ,, ,A C B D MF L NE : 
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   
3 3
2

3
2 2

2
3

* * 2 * 3 * 1

* * 0,

A C b B

F I b E

b D b

K bb b

 

 



  

  






(6.23) 

    
    

3

1 3
2 2

1 3
2 2

2

3
2

* * 2 * 3 * 1

*

*

2 4

0,

F I b I b

E K b K

A C b B b D b

b b

bb b

 












  

 

  


(6.24) 

 

 

3
2

3

1

2

2

1
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* * 2 * 2
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5

0,

F I b

bE

C b D b b

m K b

m









 





 
(6.25) 
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 
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


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

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 

  

 
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(6.26) 
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(6.27) 

 
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2

3
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(6.28) 

 

 

 

3
2

3
2

3
2

1
2

1
2

1
2

* * 2 2 *

2 *

2 * *

5

5 0,

F I a

E K a

N I

aC a D m a

m a

m a a M a















 



    

 

(6.29) 
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    
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(6.30) 
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*
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    
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
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

 
(6.31) 

where 

* *

2
* **

2

/
,

/

2 2 /
,

2 2 /

'
.

k k

k k

a

a





       
   



 
 

   





  

   
 

 

The hydro-dynamic drag force exerted on 

the micropolar drop by the surrounding 

micropolar fluid is given by  

 * *2 2 .F D    (6.31) 

The drag force 
*F acting on a micropolar 

drop in an unlimited medium occupied with 

another immiscible micropolar fluid is given by  

   

     
2

1 3 1

3 3 2 1 2 33 2 3

* 3

3 2 1 2

6 2
,

Ua m n
F

m d

m n

n m n nd n n d d mm m


   

  


 



 (6.32)

 

where 1 2 3 32 3 2, , ,, ,,d d mn n n m are defined in 

Appendix C. 

The wall correction factor K    for this case 

is given by  

     

 

23 3 2 1 2 3 3

1

* *2 3 1 2

3

2

1

3

3

.

3

m d n d n d m m
K

n m n m n

n

D
d

m nm

   






 (6.33) 

 

7. Results and discussions   

In this section, we present the values of the 

wall correction factors for the three cases 

considered in this study. 

Throughout our calculations, we consider 

the following values of the micropolar 

parameters: 

2 2 2 2/ / 0/ 3/ .a a a a             
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(a) Expression (4.32) for the wall correction 

factor K  of a viscous droplet immersed in 

micropolar fluid as a function of micropolarity 

parameter /  , the viscosity ratio \    

and spin parameter  , 0 1s s  . 

(b) Expression (5.29) for the wall correction 

factor K    of a micropolar drop immersed in 

viscous fluid as a function of micropolarity 

parameter /   , the viscosity ratio \      

and spin parameter  , 0 1s s  . 

(c) Expression (6.33) for the wall correction 

factor *K  of a micropolar drop immersed in 

micropolar fluid as a function of micropolarity 

parameters /  and /   , and the viscosity 

ratio
* \     .

 
Fig.2: The wall correction factor K  with the 

ratio /a b  for different values of    with

/ 0, 5k    , and 0.2s  . 

Table 1 and Fig.2 exhibit the correction factor

K  against the ratio /a b for the case of a 

viscous drop at the center of a cavity filled with 

micro-polar fluid.  The plots in in Fig 2.2 and 

the numerical values of K  in Table 2.1 indicate 

that  the wall correction factor increases as the 

ratio  increases with maximum values when 

the spherical droplet become solid ( ) 

and  has minimum values for the case of gas 

bubble 0 .  As expected, keeping /k  and 

  fixed, the wall correction factor increases 

with /a b  and K  as / 1a b  . For 0   

and fixed / ,a b  the wall correction factor K  

decreases with the increase of the micropolarity 

parameter /k  . For the solid spherical particle 

case   , K  decreases with the increase of 

the micropolarity parameter /k   up a certain 

value of  1/ saya b c  and for 1/a b c , this 

behavior is reversed that is the wall correction 

factor increases with the increase of /k  . It is 

noted that 1c around o.65 for / 5k   ; while it 

is around 0.1 for / 3k   , this means that the 

reverse behavior disappears for / 3k   . 

Table 1: The wall correction factor K on the 

viscous drop at the concentric position of the 

spherical cavity for various values of /a b and 

 with 0.2s  and / 0,3k   

 

 
  

 ⁄  
  

                 

0 

0.1 1.176469 1.228884 1.275381 1.286196 

0.2 1.428409 1.575101 1.719937 1.755845 

0.3 1.815186 2.126127 2.477682 2.572638 

0.4 2.468877 3.065980 3.864508 4.105934 

0.5 3.722224 4.830189 6.654733 7.294118 

0.6 6.569091 8.632597 13.06102 14.94813 

0.7 14.82553 18.78861 31.01511 37.82962 

0.8 50.77342 58.41122 102.0140 138.2237 

0.9 439.1557 431.7323 718.7807 1209.778 

0.98 60695.35 50758.07 58426.52 163427.8 

3 

0.1 0.236908 0.304353 0.537904 0.720867 

0.2 0.657138 0.817246 1.401903 1.865507 

0.3 1.473361 1.760704 2.927322 3.869409 

0.4 3.177104 3.607817 5.802297 7.621345 

0.5 7.065384 7.490829 11.61189 15.15734 

0.6 16.61415 17.22425 24.73756 32.09661 

0.7 42.44754 50.14650 60.82856 78.57493 

0.8 145.3872 204.2336 206.3463 1064.751 

0.9 1074.126 1568.819 2007.753 2050.927 

0.98 109861.1 185728.8 248460.3 293761.2 

 

Fig.3: The wall correction factor K   with the 

ratio /a b  for different values of    with

/ 1, 5k    , and 0.2s  .  

Table 2 and Fig.3 exhibit the correction factor

K   against the ratio /a b for the case of a 

micropolar droplet at the center of a cavity 

filled with viscous fluid.  The plots in Fig 3 and 

the numerical values of K   in Table 2 indicate 

that  the wall correction factor decreases as the 

ratio   increases with maximum values when 

the spherical droplet become solid ( 0 ) and  
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has minimum values for the case  .  Note 

that here the definition of   is the ratio of 

viscosities between external to internal fluid 

phases. Here also as expected, keeping /k 

and   fixed, the wall correction factor K   

increases with /a b   and K    as / 1a b  . 

For fixed /a b , the wall correction factor K   

increase with the increase of the micropolarity 

parameter /k  . A comparison between tables 

1 and 2 shows K K  for the corresponding 

values of all parameters. 

Table 2: The wall correction factor K on the 

micro-polar drop at the concentric position of 

the spherical cavity for various values of /a b

and  with 0.2s   and / 1,3k   . 

  

   
 

 ⁄  
   

                     

0 

0.1 0.169697 0.148015 0.147839 0.127193 

0.2 0.455952 0.399309 0.359468 0.320155 

0.3 1.165769 0.815550 0.747658 0.558586 

0.4 3.091914 1.787890 1.349758 0.964064 

0.5 10.53199 4.099761 2.545288 1.793005 

0.6 264.2645 10.55046 5.336549 3.818707 

0.7 5180.024 33.97130 13.50212 10.04362 

0.8 7826.971 178.6712 48.56526 38.13548 

0.9 12364.59 413.8146 346.0909 266.0226 

0.98 60753.94 54367.75 47981.56 26853.29 

3 

0.1 0.185078 0.158708 0.127630 0.118967 

0.2 0.472347 0.426363 0.364881 0.341835 

0.3 0.950504 0.912906 0.848108 0.824952 

0.4 1.943199 1.931467 1.877633 1.823610 

0.5 4.918337 4.662613 4.001639 3.612993 

0.6 14.58037 12.81052 9.377179 7.882092 

0.7 60.70186 45.13994 26.15953 20.62456 

0.8 1078.855 287.7909 101.9887 76.65208 

0.9 5291.419 1076.194 916.5998 679.1719 

0.98 119841.1 93174.27 28047.34 1300.788 

 

 
Fig. 4: The wall correction factor *K  with the 

ratio /a b  for different values of    with

/ 1, 5k    , and '/ ' 1k   .  

Fig. 4 and Fig. 5 exhibit the wall 

correction factor *K  against the ratio /a b for 

the case of a micro-polar drop at the center of a 

cavity filled with micro-polar fluid.  For the 

entire ranges of 
*/ , / ,k k    , the wall 

correction factor *K increases with /a b . For 
* 0  and for a given value of /a b , the wall 

correction factor increases with the increase of 

/ , or /k k   . /a b  For * 0  , the wall 

correction factor may increase or decrease as 

/ , or /k k    increases. Table 3 gives the 

same information as stated above. 

 
Fig.5: The wall correction factor *K  with the 

ratio /a b  for different values of    with

'/ ' 1, 3k    , and / 1k   . 

8. Conclusion 

The axisymmetric motion of a spherical droplet 

at a concentric instantaneous position of a 

spherical cavity filled with another immiscible 

fluid has been examined in this work. Three 

cases are considered: viscous fluid droplet in a 

micropolar fluid, micropolar fluid droplet in a 

viscous fluid and micropolar fluid droplet in a 

micropolar fluid. For the first and second cases, 

the microrotion-vorticity boundary condition is 

used at droplet surface while for the third case, 

the continuity of microrotation and tangential 

couple stress have being used. The velocity 

fields are solved using spherical coordinates 

and the droplets velocities obtained for various 

values of the fluid properties for each case. The 

motivation of this study is to find the effect of 

boundary on the droplet. The effect of 

interaction between droplet and cavity 

expressed by finding expressions for the wall 

correction factors. It is fund that the interaction 

between the droplet and cavity can be very 

strong when their gap thickness approaches 

zero. For the special case the wall correction 

factor is stronger when it compered with the 

gas bubble.  
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Table 3: The wall correction factor *K on the micropolar droplet at the concentric position of the 

spherical cavity for various values of /a b and  with / 1,5k    and '/ ' 1,3k   . 

 

 
 

  

   
 

 ⁄  
   

                 

1 1 

0.1 0.5979 1.1903 1.2892 1.6743 

0.2 0.9434 1.4664 1.7792 2.1541 

0.3 1.5235 1.9021 2.6758 3.0589 

0.4 2.6012 2.6587 4.4641 4.8138 

0.5 4.1121 4.8686 8.3157 8.3669 

0.6 7.3132 10.462 15.228 17.291 

0.7 16.316 27.808 40.933 48.073 

0.8 54.849 106.76 111.73 129.80 

0.9 332.16 465.98 598.92 892.40 

0.98 1227.99 5384.64 32372 63534 

      

1 3 

0.1 1.1903 1.2892 1.4347 1.6577 

0.2 1.4664 1.7384 1.7792 2.1383 

0.3 1.9021 2.3141 2.6758 3.0699 

0.4 2.6587 3.4106 4.4640 4.9189 

0.5 4.1121 5.6614 8.3089 8.8032 

0.6 7.3132 10.934 17.497 17.087 

0.7 7.3132 10.934 17.087 17.497 

0.8 54.849 83.463 93.236 96.165 

0.9 465.98 1067.5 249.14 167.49 

0.98 290.64 3075.9 43630 63534 

      

5 1 

0.1 1.1889 1.2895 1.4122 1.6971 

0.2 1.4647 1.7799 1.8033 2.1934 

0.3 1.9029 2.4408 2.6803 3.0663 

0.4 2.6797 3.6325 4.5136 4.7094 

0.5 4.2543 6.6543 8.0911 8.7568 

0.6 7.9427 10.579 15.619 20.028 

0.7 18.071 24.545 46.183 54.837 

0.8 56.352 99.619 157.55 193.66 

0.9 407.67 898.37 1000 1341.4 

0.98 4503.26 200967 47614 82572 

 

Table 4: Summary 

Parameter 

 K  , the wall correction factor acting on a spherical viscous 

droplet in spherical cavity filled with micropolar fluid. 

 K 
 
, the wall correction factor  acting on a spherical 

micropolar droplet in spherical cavity filled with viscous fluid 

 
*

K
 
, the wall correction factor  acting on a spherical 

micropolar droplet in spherical cavity filled with micropolar fluid 

/a b the relative separation distance 

 K , K   and 
*

K  are monotonic increasing functions of /a b  

 / 0a b   , the droplet moving in an unbounded medium in the 

absence of the cavity wall, K , K   and 
*

0K   

 / 1a b   , the droplet touches the cavity surface, K , K   and 

*
K  become infinite. 

 K , K   and 
*

K  are increases with /a b    

/ , or /k k   
, 

The micropolarity 

parameter 

 K   , decreases with the increase of /k  . 

 K 
 
, increase with the increase of /k   . 

 
*

K
 
, increases with the increase of / , or /k k    . 

S, the spin parameter 
   0s   (no-spin), the microrotation component vanishes on 

the droplet surface. 
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 K , K   and 
*

K are decreasing as s increases. 

    1s  (perfect spin), the microrotation component equals the 

vorticity at the droplet surface 

 , the ratio of viscous fluid viscosity 

to micropolar fluid viscosity 

 '/    

   , a solid sphere moves in a micropolar fluid. 

 0  , a gas bubble moves in a micropolar fluid. 

 K  , increases with an increase in . 

' , the ratio of micropolar fluid 

viscosity to viscous fluid viscosity 

 / '    

 '  , a gas bubble moves in a viscous fluid. 

 ' 0  , a solid sphere moves in a viscous fluid. 

 'K  , decreases with an increase in ' . 

* , the ratio of micropolar fluid 

viscosity to micropolar fluid viscosity 

 
*

'/    

 
*

   , a solid sphere moves in a micropolar fluid. 

 
*

0  , a gas bubble moves in a micropolar fluid. 

 
*K  , increases with an increase in 

* . 

 

Appendix A 

   

    
 

    

3 3 2

1

3 2 39
2

2

2

3 23 9
2 2

3 1 3 1

1 3 1

3 1

1 1 ,

c c c c

c c c

c c c

c c c

   

    


  


   




 

        (A.1) 

 

    
     

    

     

3
2

3
2

3
2

3
2

3 3

3

3 33 9
2 2

3

4

3

3

1 3

1 3

3

2 4

2

4

39
2 2

1

1

3 1

3 1 3

3 1

1 3

1 3 ,1

c a c c c

a c c c

c a c c c

c a c c









   



     


    

     








 
  (A.2) 

    

    

3 3 215
5 2

3 2151
6 2 2

5 1 1

5 2 1 1 ,

1c s c sc c

c s c s c c

     


   

       (A.3) 

    

 
    

 

3
2

3
2

3 2 2 5
7 2

315
2

3 2 2 5
8 2

31

2

5

1

2

3

4

1 3

1 3

,

1

1

c c ma s

sc c

c c ma s

sc c

a

a





   





    








        (A.4) 

            (A.5) 

 

           (A.6) 

            (A.7) 

 

Appendix B 

    
 

    
 

3 23
1 2

2

3 3 23
2 2

5

1 3 1

1

2 1 3 1

1 ,

3

3

c c c c

c c

c c c c

c

    

  


      


 




 

              (B.1) 

  

    

35
3 12

2 315 5
4 2 2

1 3

1 1 ,

c c

c c s c

a

c

    


     





            (B.2) 

    

      

3 3 215

5 2

1 3 3

6

5 1 1 1

1 2 1 2 1 1 ,

c s c c c

c c c c c c


     

     





(B.3) 

     
 

 

1
2

3
2

2

1

3 3 2

7 2 2 1 1 2 1 1

.

c c c

a

c c

I a

I








  



  










 (B.4) 

Appendix C 

 1 1

1

1

2

3 1
ˆ

ˆ2

,

d m

d

 



 





 

                     (C.1) 

 

 

  
 

*

1

1

1 1

1

* 1

2

2

3
ˆ

3 2

ˆ2 5

2 1ˆ

5 1

5

,

m

m

m m  









 



  

 

    

    




       (C.2) 



  

Mans J Mathematics Vol. (39).2022. 14 

  

 

  
  

*

1 2

1 1 2

2 2 1

1 1

1

2

2

3

* 1 1

ˆ3 1

ˆ ˆ ˆ3

ˆ 2 1

ˆ 2 1

ˆ

,

n

m

n m m

n

 

 

 







   











   

    

   

         

        (C.3) 

 
 

 
 

1 1
2 2

3 3
2 2

1 2

ˆ ˆ
ˆ ˆ,

ˆ
, , .

ˆ

K I
a a

K I



 


    (C.4) 

 

References 

1  S.S. Sadhal , P.S. Ayyaswamy, and J.N. 

Chung, (1997).Transport Phenomena with 

Drops and Bubbles, Springer-Verlag New 

York, Inc.  

2 G.G. Stokes. (1851) On the effect of 

internal friction of fluids on the motion of 

pendulums. Trans. Camb. Phil. Soc., 9:8-

106, [also Scientific Papers, 3: 1 141, 

Cambridge University Press, Cambridge, 

190I]. 

3 W. Rybczynski. (1911).Über die 

fortschreitende Bewegung einer 

Fliissingen Kugel in einem zlihen 

Medium. Bull. Inst. Acad. Sci. Cracovie, 

A:40--46,  

4 J.S. Hadamard (1911) Mouvement 

permanent lent d'une sphere liquide et 

visquese dans unliquide visqueux. C. R. 

Acad. Sci. Paris, 152: 1735-1738,  

5 R. Niefer, P.N. Kaloni, (1985) On the 

motion of a micropolar fluid drop in a 

viscous fluid, J. Eng. Math. 14 (2) 107–

116,  

6  T.D. Taylor, A. Acrivos, (1964) On the 

deformation and drag of a falling viscous 

drop at low Reynolds number, J. Fluid 

Mech. 18 466–476.  

8 D.S. Dandy, L.G. Leal, (1989) Buoyancy-

driven motion of a deformable drop 

through aquiescent liquid at intermediate 

Reynolds numbers, J. Fluid Mech. 208 

161–192.   

9  A.M. Ardekani, S. Dabiri, R.H. Rangel, 

(2009) Deformation of a droplet in a 

particulateshear flow, Phys. Fluids 21 

093302-1–093302-8. 

10  H.J. Keh, Y.K. Tseng, (1992) Slow 

motion of multiple droplets in arbitrary 

three-dimensional configurations, AIChE 

J. 38 1881–1904. 

11  S. Kim, S.J. Karrila, 

(2005).Microhydrodynamics: Principles 

and Selected Applications, Dover, 

Mineola, New York,  

12 A.Z. Zinchenko, R.H. Davis, (2005) A 

multipole-accelerated algorithm for 

closeinteraction of slightly deformable 

drops, J. Comput. Phys. 207 695–735. 

13  C. Pozrikidis, (2010)Interception of two 

spherical drops in linear Stokes flow, J. 

Eng.Math. 66  353–379. 

14 E. Bart, (1968) The slow unsteady settling 

of a fluid sphere toward a flat fluid 

interface, Chem. Eng. Sci. 23 193–210.  

15 E. Rushton, G.A. Davies, (1973) The slow 

unsteady settling of two fluid spheres 

along their line of centres, Appl. Sci. Res. 

28 37–61. 

16 E. Wacholder, D. Weihs, (1972) Slow 

motion of a fluid sphere in the vicinity of 

another sphere or a plane boundary, 

Chem. Eng. Sci. 27 1817–1828. 

17 G. Hetsroni, S. Haber, E. Wacholder, 

(1970) The flow fields in and around a 

dropletmoving axially within a tube, J. 

Fluid Mech. 41 689–705. 

18 H. Brenner, (1971) Pressure drop due to 

the motion of neutrally buoyant particles 

induct flows, II, spherical droplets and 

bubbles, Ind. Eng. Chem., 

Fundamentals10 537–542. 

19 M. Coutanceau, P. Thizon, (1981) Wall 

effect on the bubble behaviour in highly 

viscous liquids, J. Fluid Mech. 107 339–

373. 

20 H.J. Keh, Y.C. Chang, (2007) Creeping 

motion of a slip spherical particle in a 

circular cylindrical pore, Int. J. 

Multiphase Flow 33 726–741. 

21  M. Shapira, S. Haber, (1988) Low 

Reynolds number motion of a droplet 

between two parallel plates, Int. J. 

Multiphase Flow 14 483–506. 

22 H.J. Keh, P.Y. Chen, (2001) Slow motion 

of a droplet between two parallel plane 

walls, Chem. Eng. Sci. 56 6863–6871. 

23 J. Magnaudet, S. Takagi, D. Legendre, 

Drag, (2003) deformation and lateral 

migration of a buoyant drop moving near 

a wall, J. Fluid Mech. 476 115–157. 



  

Mans J Mathematics Vol. (39).2022. 15 

24 K. Sugiyama, F. Takemura, (2010) On the 

lateral migration of a slightly 

deformedbubble rising near a vertical 

plane wall, J. Fluid Mech. 662 209–231 

25  Tai C. Lee, Huan J. Keh, (2012) Creeping 

motion of a fluid drop inside a spherical 

cavity, European Journal of Mechanics 

B/Fluids 34 97–104. 

26 M.S. Faltas, and E.I. Saad, (2014):  Slow 

motion of  spherical droplet in a 

micropolar fluid flow perpendicular to a 

planar solid surface, European Journal of 

Mechanics B/Fluids 48 266-276. 

27  E.I. Saad, (2016): Motion of a viscous 

droplet bisecting a free surface of a semi-

infinite micropolar fluid,Eur. J. Mech. 

B/Fluids 5957–69. 

28 Eringen, A. C. (1964) Simple microfluids 

Intl J. Engng Sci. 2, 205–217. 

29  Eringen, A. C. (1964) Theory of 

micropolar fluids. J. Math. Mech. 16, 1–

18. 

30 Stokes, V. K. (1984) Theories of Fluids 

with Microstructure. Springer.  

31  Straughan, B. (2004) The Energy 

Method, Stability and Nonlinear 

Convection, 2nd edn. Springer. 

32  R. E. Rosensweig and R. J. Johnston, 

(1989), Continuum Mechanics and its 

Application (Hemisphere, New York, pp. 

707–720. 

33  H. Hayakawa, (2000). “Slow viscous 

flows in micropolar fluids,” Phys. Rev. E 

61, 5477–5492 ( 

34  N. Mitarai, H. Hayakawa, and H. 

Nakanishi, (2002) “Collisional granular 

flow as amicropolar fluid,” Phys. Rev. 

Lett. 88, 174301  

35 I. Goldhirsch, S. H. Noskowicz, and O. 

Bar-Lev, (200.5). “Nearly smooth 

granular gases,” Phys. Rev. Lett. 95, 

068002  

36  B. Gayen and M. Alam, (2006). 

“Algebraic and exponential instabilities in 

a sheared micropolar granular fluid,” J. 

Fluid Mech. 567, 195–233  

37  A.C. Eringen, (1969).Micropolar fluids 

with stretch, Int. J. Eng. Sci. 7: I15 

38 H. H. Sherief, M. S. Faltas, Shreen El-

Sapa, (2018).Slow motion of a slightly 

deformed spherical droplet in a 

microstretch fluid, Microsystem 

Technologies 24:3245–3259  

39  E. Cunningham, (1910) On the velocity 

of steady fall of spherical particles 

through fluid medium, Proc. Royal Soc. 

(London) A 83 (563) 357–365.  

40  Haberman, W. L., and R. M. Sayre, 

(1958) Motion of rigid  and fluid spheres 

in stationary and moving liquid inside 

cylindrical tubes, David W. Taylor Model 

Basin Report no. 1143, Washington, D. 

C.,  

41  N.P. Migun, (1984) On hydrodynamic 

boundary conditions for microstructural 

fluids, Rheologica acta 23 (6)  

42  Ramkissoon, H. (1985) Flow of a 

micropolar fluid past a Newtonian fluid 

sphere. Z. Angew. Math. Mech. 65(12), 

635–637.  

43 Ramkissoon, H. & Majumdar, S. R. 

(1976) Drag on axially symmetric body in 

the Stokes’ flow of micropolar fluid. Phys. 

Fluids 19(1), 16–21. 

44  J. Happel, H. Brenner, (2012) Low 

Reynolds number hydrodynamics: with 

special applications to particulate media, 

Vol. 1, Springer Science & Business 

Media,. 

 


