
Sci. J. Fac. Sci. Menoufia Univ, V 0 L . n  (1993). 115 - 127 

AN ALGORITHM FOR SOLVLNG' VECTOR 
OP TIMIZATION ROBLEMS WITH 

PARAMETERS IN BOTH THE OBJECTIVE 
FUNCTIONS AND THE CONSTRAINTS BY 

USING INTERACTIVE APPROACHES 

Abou- Zaid H. El-Banna* 
* Ass, Prof. of Pure Mathematics, Faculty of Science, Tanta university, Tanta- 

Egypt- 

ABSTRACT 
In this work, an algoritifun for solving vector optimization prob- 

lems with parameters in both the objective functions and the con- 

straints is introduced. An interactive approach is used for this algo- 

rithm as the surrogat worth trade-off method. Also the modfled 

Hybrid approach which combines the characteristics of both general- 

ized Tcheby-cheff norm and the K-th objective  constraints problem 

is used to scalarize the vector optimization problem. In this work 

also. the basic notions as the set iffeasible paramerers, the solvabili- 

ty set and the stability set of the first kind are redefined for this 

problem, and the stabiliy set is determined by using this algorithm, 

An example is given to clarify this algonhim. 

INTRODUCTION 
In earler work Nozidca et al. (5) and Osrnan et al. (6,7,8,9) 

gave notion of the stability set of the first kind, the set of all param- 
eters corresponding to an optimal solution of parametric convex pro- 
gramming problems (or to an efficient solution of vector optirniza- 
tion problem (VOP)). Furthermore the STEP method given in (I) is 
an interactive scheme that profrssively elicits ingomation from the 



decision maker primarily to modify the weights for solving multiobjective linear 

programming problems. Also in [3]. 1-Iain-1~ gave necessary and sufficient condition 

far the determination of the efficient solutions for (VOP) using the Hybrid approach 

which combiens the characteristics of bothe the nonnegative weighted sum problems 

and the k-th objective E-constraints problem. And in [2], Bowman determine 

necessary and sufficient conditions for the determination sf the efficient solutions for 

(VOP) using the generalized Tchebycheff norm. Also, Osman et al. in [9] introduced 

a modefied Hybrid approach for solving (VOP). 

In this paper, an algorithm for determinig the stability set of the first kind for 

vector optimization problems with parameters in both the objective functions and in 

the constraints using interactive approaches is given. 

2. PROBLEM FORMULATION 

Let us consider the following parametric multiobjective nonlinear 

programming problem: 

min ((fl(x ,A),..., fm(x, h)] 

P(h,v) subjectto 

M(v) = [x E ~ " f g ~  (x,v) l o, r = I, 2, ..., k]; 

where f. . j = 1,2, ..., m and gr , r = 1,2, ...., k are convex functions of class dl) J 
on R", and h E R1, v E Rk are vector parameters. - 

Let us define the following scalarization of P (h, v) which will be called the 

mcdilied Hybrid approach. 

- 
min max Wj[fj (x, h) - fj] - 

x E M(v) i 

P & V, E) subject to 
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- min 
whers f E Rm is an ideal target,? j = fj(x, h), and w E Ry 

x E M(v) 
(the positive orthant of the R~ - space). It will be seen that the noninferior 

solutions of P (A,, v) can be characterized in terms of the optimal solution of P(l, v) 

can be characterized in terms of the optimal solution of P(A,, v, E). 

The problem P& v, E )  can be reformulated to take the fcllowing equivalent 

form : 

nirn z - 
P(h, v, E )  subject to 

.j = 1,2, ..., m and g r (x ,v )50 ,  r =  1,2, ..., k ,) 

where Z E R 

- 
It must be noted that roblem P(h, v, E) can be written in the equivalent form [3] : 

- 
min [fk(x,3L) - fk] 

- 
Pk(3L, v, e) subject to 

which is obtained by elernhating z from the first constraint of problem P(k,v, E). 



- 
Definition 1 : The set of feasible parameters of problem Pk(& v, E) is defined 

Definition 2 : the solvability set of problem P(h, v, E) is defined by 

B = ((X,V,E) E U/P(X,v) has efficient solution) 
- n 

Definition 3 : Assume that the problem Pk(l, v, e) is solvable for (h,;,;) 

with a corresponding optimal point 6 2 )  , then the stability set of the first kind 

corresponding to G,?) which is denoted by ~6,;)  is defined by 

3. KUHM-TUCKER CONDITIONS AND STABILITY NOTION 

From the assumption that the functions fj, j = 1, ..., m and gr, r = 1,2, ..., k 

are convex on R" and differentiable, then there exist 
A 

I E R! E Rm and? E R~ such that (;i,2) solves the following 

Kuhn-Tucker problem : 



pj , Uj, V 2 0 'd i, j, r. ..................... (9) 

In order to find the stability set S(;;, :), let us consider the following set : 

then the set S 6,s) takes the form : 

= ((h , V, E E R'+~ /W~@,  h) - 31 i ;, j t% J, 



known that 

if 6 5 )  is an optimal solution of P(h, V, E) and 
A h  h h 

( x,z, u7 p, v ) 
solves the kuhn-Tucker conditions (1) - (9), where uj > o, pj 

> o, vk > o and fj are strictly convex function on R", then x is an efficient solution 

of P(1, v). 

4. INTERACTIVE WITH THE DM TO ELICIT PREFERENCE 

This method modifies. 

i) the constraint set of Pk(5 v, E), and 

ii) the weights wj fmm the formula 

Inax 
wher $ = f min 

j (x.D and fj = 
x E M(v*) fj cx.6 .  

x E M(v*) 

At the r-th iteration, the DM is asked to evaluate the solution at the (r-1)-th 
* 

iteration, and to compare the values f.(xF1), ..., fm(xr-') with the ideal fy, ..,, f,. J 

He is asked to indicate which objective can be increased and by how much, so that 

other objective can be decreased from the current unsatisfactory levels. Suppose the 

- DM chooses to sacrifice the ; + k objective f? by f The constraint 
J 

set for the r-th iteration is 



fi(x) 4(xr-I) ,  I ki , 69 > 0 
0 

and fl(x) 5 E 1, 

The weights should be modified accordingly setting 

consequently, the programming problem P(h, v, E) to be solved at the r-th iteration 

is 

min z ...................................................................................... (1 6a) 

..... gr(x,v)lo, r =  1,2 k. ....................................... (1 6d) 
The process terminates when one of the following occurs : 

i) the DM is satisfied with the current solution, 

ii) there is no satisfactory objective in the current solution; or 
.... 
,:I) when r = n 



5. THE ALGORITHM 

* 
Step 1 : Asking the DM to select any (Il, v;) E u to obtaifl an efficient 

solution x; of P(X, v). &so, selects fk as a primary objective. 

Step 2 : Compute the initial set of weights wl, ..., wm, set r = 1, M' = M. 
C 

Step 3 : Asking the DM to select E! , where each & should be selected 
J 

in the range [aj, bj] where 

min max aj = fj(x, h;), bj = fj(x7 1;). 
x E M (v;) x E M (v;) 

Step 4 : Formulnto (la) (16d) and solvo to obtain x i ,  Thon campure 

fib;, A;), a - - ,  fdx ; ,  h i ) .  

Step 5 : Using (10) and (1 1) to obtain the set of all parameters corresponding to x; . 

Step 6 : Asking the DM to compare fl(x;, A;), ..., f,(x;, hi) with 
- - 
f l ,  * - * 7  fm 

(a) If the DM is satistfied with the current solution, stop-the 
' - 

best-compromise has been found. - 

(b) If there is no satisfactory objective, stop-no best-compromise solution 

can be found by this method. 

(c) If there are some satisfactory objective, ask the DM to select one such 

objective f; and the amount 64 to be sacrificed (increased) in 

exchange for an improvement of some unsatisfactory objective. 

Step 7 : If r = n, stop-no best-compromise solution can be found by this method. 



Otherwise set r = r + 1, compute M ~ ,  and modify the set of weights 

according to (13). (14) and (IS), respectively. Then go to step 1, where .- 

cn;, 4) fE SG, ,%). 

Step 8 : Analyzing the DM, and bathing through the questions qu. 1 and qu. 2 

(Appendix (A)), one would expect that the solution xr+l of a new 

problem &(<, V:, E'), where 

would be a better point than xr according to the DM stop. 

6. MUMERICAL EXAMPLE 

Let us consider the following problem : 

where 

fl (x,h) = hl(xl - 3)2 + h2(x2 - 2)29 

f2 (x,h) = hlxl + h2x2* 

f3 (x,h) = hlxl +2 h2x2* and v E [o, 11. 

Step 1 : Asking the DM to select (h;, v;) = (1, 1, 1 ,  E U to obtain an 

efficient solution xi , also select fl as a primary objective. 

Step 2 : The original set of weights computed from (12) is w2 = 113, w3 = 2/3, 



and the DM select E' = (7,2,4). 

* 
Step 3 : We solve the problem Fl (hl yv; , ~ l ) ,  which yields the solution 

& 
xl = (0.4, 1.6), 
- 
21 = 0.67, fl(x;, h;) = 6.9, f2 (x;, h;) = 2 P 

. 
and f3(x;,h;)=3.6. 

Step 4 : Using (10) an6 (1 1) to obtain the set of all parameters sG, 21) 
where I = { 3 ) ,  j = (1.31, S = 0 

* * * 
Step 5 : Suppose the DM compares fl(x;, hl), f2 (xi, hl), f3 (xi, hi) 

with the ideal (2,0,0) and is willing to give up (increase) f2 by one unit 

from 2 to 3  to improve fl, and then compute 

2 Step 6 : The new constraints set M becomes 

M 2 = M 1 n M 2 = ~  nM2(v), 



xl + xz < 3, x1+2x2 I 3.6 and 

* * 
Take w2 = o m w3 = 1 and select (12, v2), B SG 

* 1 where h2 = (2. 2), v2 = - 
2 '  

Step 7 : We solve min 2 

which yields x; = (1. 4, 1 .1 )~ ;~  - = 7.2 and 

fi(x;, h> = 22.64, f; = 5, f3 = 7.2. 

Step 8 : The set of all parameters corresponding to g2, z;) , where 

I =  (1,2,3), J =  (1,2), S =  (1) takesthefom 

= ((~,v,E) : 1.4 h1 + 2.2 % = 7.2, 

23.37, 922 .5 ,  9 2 3 . 6  and n20.5). 

L 
.;g APPENDIX (A) 

Trade-off information [3]. 

Let hkj(xO), j = 1, 2, ..., m, j t k be the Kuhn-Tucker multipliers 

corresponding to the &-constraints of &(h, v , ~ )  where x0 &(Xy V,E) : 
(i) If all h .(xO) < o for each j, then the efficient surface in the objective space 

k~ 
around the neighborhood of f" = F(x') can be represented by fk = fk(fi, .... fk 

fk+l, ..., f,) and 



afk hkj (x') = - - for each j, j = 1,2, ..., m, j # k (Al). af, IF-F- 
Thus each ikj(xq =presents the efficient partial trade-off rate between fk and 

f. at I? when all other objectives are held fixed at their respective values at 
J 
xO. 

(ii) If ikj(xo) > o for some j # k and h*l ( ~ 7  = 0, for some I t k, the efficient 

surface in the neighborhood of can then be expressed as fk = fk (s), where 
A 

is a vector consisting of d l  fj widk l  (x? > 0. Also, each la (x4 that 

is strictly positive can be interpreted as a trade-off rate, that exhibits an exchange 

between fk and 5 while each objective fl such t h a d . ~  (xO) = 0 also changes. 

Thus if hiI , for each 1 i k, then hkl approximates a local partial 

trade-off at a point xi where hi, is the Kuhn-Tucker multiplier associated with 

the constraints fl(x) < . To move from xi to some other locally efficient 

point in the neighborhood of xi , hLl units of fk will be given up per one 

unit gain of fl (or vice versa), with all other objectives remaining constant at the 

level of fi(xi), I # k and j and therefore if hZl > o for all 1 # k, we ask the DM 

for each 1 # k : 

qu. I : "given that f- = f-(x') for all j = 1, ..., m, how (much) would you like to 
J J 

decrease fk by hkl units for each one unit increase in f1 will all other f. 
J 

remaining unchanged ?". -3 

t 
If we make a smal change of 6 fj units in fIi and setting wj = o, where 

1 E & = (j/l 5 j S n, j # k, hkj > o),  then fki changes by - hil 6fi, 
and each f., where lkj = 0, also changes by hil 6f1, and each fa, where ikj = J J 

ax(&') 
0, also changes by (Vfj(xi) - ) afl units, 

a&l 

qu. 2 : Given that f. - f-(x') for all j = 1, ..., m, how (much) you like to decrease 
1 -  J 



i ax(&') 
fk by hkl units and change fj by Vfi(xi) units, while increasing fi 

by one unit ?. ~ E I  
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