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ABSTRACT

In this work, an algoritihm for solving vector optimization prob-

lems with parameters in both the objective functions and the con-

Straints is introduced. An interactive approach is used for this algo-

rithm as the surrogat worth trade-off method, Also the modified

Hybrid approach which combines the characteristics of both general-

ized Tcheby-cheff norm and the K-th objective .E-consiraints» probilem

is used to scalarize the vector optimization problem. In this work

also, the basic notions as the set of feasible paramerers, the solvabili-

ty set and the stability set of the first kind are redefined for this

ot problem, and the stability set is determined by using this algorithm,

An example is given to clarify this algorthim.
INTRODUCTION

In earler work Nozidca et al. (5) and Osman et al. (6,7,8,9)
gave notion of the stability set of the first kind, the set of all param-
eters corresponding to an optimal solution of parametric convex pro-
gramming problems (or tc an efficient solution of vector optimiza-
tion problem (VOP)). Furthermore the STEP method given in (1) is
an interactive scheme that profrssively elicits ingormation from the
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decision maker primérily to modify the weights for solving multiobjective linear
programming problems. Also in [3). Haims gave necessary and sufficient condition
for the determination of the efficient solutions {for (VOP) using the Hybrid approach
which combiens the characteristics of bothe the nonnegative weighted sum problems
and the k-th objective e-constraints problem. And in [2], Bowman determine
necessary and sufficient conditions for the determination of the efficient solutions for
(VQOP) using the generalized Tchebycheff norm. Also, Osman ef al. in [9] introduced
amodefied Hybrid approach for solving (VOP).

In this paper, an algorithm for determinig the stability set of the first kind for
vector optimization problems with parameters in both the objective functions and in

the constraints using interactive approaches is given.
2. PROBLEM FORMULATION

Let us consider the following parametric multiobjective nonlinear

programming problem:

min {(f;(x,3), ... fp(x, Al
P V) subject to
M) =[x eRYg, (x,v)<0,r=1,2,... k],

where fJ ,ji=1,2,..,mand g.r=1, 2, ...., k are convex functions of class c)

onR®, and A e R}, v ¢ RK are vector parameters.

Let us define the following scalarization of P (A, v) which will be called the
modified Hybrid approach.
_ min ma;( Wj[t:i x,A) - fj]
xe M(v)
P, v,¢e) §ubject to
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fj(x) < €j,j =12, .. m,
whers f € R™ is an ideal target, i= o fj(x,' X), and w e RT
x e M(v)

(the positive orthant of the R™ - space). It will be seen that the noninferior

solutions of P (A, v) can be characterized in terms of the optimal solution of P(A, v)

can be characterized in terms of the optimal solution of P(A, v, ).

The problem P(A, v, €) can be reformulated to take the following equivalent

form :

nim z
P(A, v,€) subject to
NQLV.€) = {(x,2) € R*Ywilfi(x,A) - §j] - z S0.f(x) - g < o,

j=12,...,m and g(x,v)<o0, r=1,2,...k ,}
whereZ € R
It must be noted that roblem i’()\, Vv, £) can be written in the equivalent form [3] :
min (£ (x,A) - f]
P (A, v, €) subject to

Nk v.€) = {(x.A) € RM*I/wilfi(x,A) - ] - fi(x,A) + f <o,

i=1,2,..,mi#k fjx)-g<0,j=1,..,m, g(x,v)<o,

r=1,2,..%k },
which is obtained by eleminating z from the first constraint of problem ‘P(X,v, £).
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Definition 1 : The set of feasible parameters of problem_Pk(l, v, €) is defined

% y= {(\,v.,£) & RF™/N (A, v,E) # o)

Definition 2 : the solvability set of problem P(A, v, €) is defined by
B= {(?\.,v,s) e U/P(A,v) has efficient solution>
Definition 3 : Assume that the problem P;()., v, €) is solvable for (), V.£)

with a corresponding optimal point 65,%) , then the stability set of the first kind
corresponding to 6{, 2) which is denoted by SGE, %) is defined by

S&H={AVv,e)e BA=.  min [fxA)-f]
(X,Z) € Nk(x:v: 8)
3. KUHM-TUCKER CONDITIONS AND STABILITY NOTION

From the assumption that the functions t:i, j=1,.,mandg,r=12..,k

are convex on R and differentiable, then there exist

A€ R, L€ R™and v € RX such that (X,2) solves the following

Kuhn-Tucker problem :

Of @)+ 2 uj Wj O G+
j#k dXa

OXa J

m | ' '
ZMl.a_flE.@-Pz vl,..a_g-t_ 6{;\7’):0,(1:1’ weeg I eesecosacscass (l)
i=1 Xa S 9Xa |
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A wEE N -F0,  jTLeal JEK e (3)
fi(i\)__.éiso’ 1=l e M e, (4)
g(Z,V)<01e ST {1 unkl s (5)
‘ g (R, %)=0,  KES e, (6)
Wt G5l 0= Leamzk 7
| WG -81=0,  J=loewm ®)
Bj.wpv2o Vijr )
In order to find the stability set S(X, Z), letus conside; the following set :
T={LISMj=0, jeTc(l, ..m)
w=o0,ie Ic{l, .., n},
vr=o,re Scil, .., k}
(s> 05 ¢ T >0, € Tand vy >o,re § | (10)
) then the set S (X,Z) takes the form :

U Sais) (.2
1L1,S)

SX.2) =

= ((2. . V,E€E Rl+m/w‘i(i-’ ?\') --fj]] S%’j € Js
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wilfix, M) -fl =2 je J,
It is well g(X,v) <o,re Sandg(X, V) =o,re S| oo (11)

known that "
. X2 . . .
if is an optimal solution of P(A, v, €) and

(X2, 0, L, V)
solves the kuhn-Tucker conditions (1) - (9), where y >0, uj

>0, v >o0and fJ are strictly convex function on R, then x is an efficient solution

of P(A, v).
4. INTERACTIVE WITH THE DM TO ELICIT PREFERENCE
This method modifies.

i) the constraint set of Pk(}\, v, £), and
ii) the weights Wi from the formula

£ =
o BB (12)
2 -
=k
herfi= . T
wher ) xeM(v*) jxA) and fj= min f:i(x.l).
' x € M(V")

At the r-th iteration, the DM is asked to evaluate the solution at the (r-1)-th

iteration, and to compare the values t:i(xr'l), e £ (KT 1y with the ideal f’;, .

He is asked to indicate which objective can be increased and by how much, so that
other objective can be decreased from the current unsatisfactory levels. Suppose the
DM chooses to sacrifice the j #k  Objective 1} by  Af;. The constraint

set for the r-th iteration is
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*

M= MO AM, e, (13)
% aere
M = {x & MOSE () S (1) + O
fi(x) <Eielxr1), + Ny B
fi) <D, 1#kj, 88>0
and fi(x)<e,,

f}(X)SEJ. +8f;, j#E], k[ ceeeeeeeeinnn (14)

The weights should be modified accordingly setting
wj=o0and w;=
i),k

consequently, the programming problem P(A, v, €) to be solved at the r-th iteration

is
min Zonrennssennarensennssrsronssneness erevereeasase s eaeasensesteneas e e seeereras (16a)
st.wi [fix\) -f]-z<0,i=1,2,..,mi%kj, .. . (16b)
) - €S0, j= L2 s M Lottt (16¢)
GX VIS0, 1= 2 ke, (16d)

The process terminates when one of the following occurs :
i) the DM is satisfied with the current solution,
ii) there is no satisfactory objective in the current solution; or

ity whenr=n
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5. THE ALGORITHM

Step 1: Asking the DM to select any (KT, V’I) e U to obtain an efficient
solution x] of P(A, v). Also, selects f as a primary objective.

Step 2 : Compute the initial set of weights wy, ..., w,setr=1, Mf =M.
Step 3 : Asking the DM to select g} , where each e} should be selected
in the range [aj, bj] where
min * max *
aj = , G A1), bj = . fitx A1)
xe€ M(vy) xe M (vy)

Step 4 : Formulate (16a) - (16d) and solve to abtain x'{. Then compute

* * *
£1(x%, A1), oo Em(XT) A1)

Step 5: Using (10) and (11) to obtain the set of all parameters corresponding to x;.
* *
Step 6 : Asking the DM to compare  fi(x], A1), ..., fm(X], A1)  with
-f-:l, cesy ?m

(a) If the DM is satistfied with the current solution, stop-the

best-compromise has been found.

(b) If there is no satisfactory objective, stop-no best-compromise solution

can be found by this method.

(c) If there are some satisfactory objective, ask the DM to select one such

objective f; and the amount 3fj to be sacrificed (increased) in

exchange for an improvement of some unsatisfactory objective.

Step 7 : If r = n, stop-no best-compromise solution can be found by this method.
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Otherwise set r = r + 1, compute M, and modify the set of Weights
according to (13), (14) and (15), respectively. Then go to step 1, where -~

(A2, vp € SG&; , %))

Step 8 : Analyzing the DM, and bathing through the questions qu. 1 and qu. 2

r+1

(Appendix (A)), one would expect that the solution x of a new

problem f)k()‘: , Vs, €r), Where
g =¢f-8fjand &' =& + 5fj,
(8f; >0 and df; >0)
would be a better point than x according to the DM stop.

6. MUMERICAL EXAMPLE
Let us consider the following problem :

min (f1(x,A), f(x,A), f3(x.A)
subject to

x1+x2-vs2andx1,x220,

where
f1 (GA) = Ai(xg - 3)% + Ap(x - 2)%
2 (X,A) = Aix1 + Aoxo

f3 (x,A) = A1x1 +2 Agxpand v € [o, 1].

%*
Step 1 : Asking the DM to select (A, v;) =(1,1,1,_€ U to obtain an

efficient solution x’; , also select f; as a primary objective.

Step 2 : The original set of weights computed from (12) is wy = 1/3, w3 =2/3,
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and the DM select el = (7, 2, 4).

Step 3 : We solve the problem 1?1 (7\.’;,\/:, gl), which yields the solution
X1 = (0.4, 1.6),

71 = 0.67, f(x5, A1) = 6.9, f2 (<, AD) =2
and £ (<, A}) = 3.6.
Step 4 : Using (10) an& (11) to obtain the set of all parameters SGE)k , Z1)
where I={3}, j={1,3}), S=¢

U
S ’A - S 7 ,I\
X1, 21) LS (1, 2)

= {(A, v,€):6.7h; +0.16 A, <2.67
0424, +32 Ay <096
83 < 16, 0.4 A.l +1.6 12 =233
El =6.9, 82= 2,v= O}.

* * *
Step 5: Suppose the DM compares f1(x], A1), £2 (1, A1), 3 (x’;, A1)
with the ideal (2, 0, 0) and is willing to give up (increase) f, by one unit
from 2 to 3 to improve f}, and then compute

of

Mp=- 2L 2 =96
ofy %1

Step 6 : The new constraims set M2 becomes

MZ=M!AM2Z=M AM?(V),

where

M2(v) = {xe R2/ (x1 - 3)* + (x2 - 22 £ 16.5,
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X1 +x3 £3,x1+2x2< 3.6 and
X1+X2 -VE2, x1+2x25 5,
(x1-3)2 +(x2-2)2 < 7}.
* * Ak
Take wy =0 = wy=1 and select (A2, Vi), & 36(“, 1)
* 1
where Ay=(2.2), v = 3"
Step 7 : We solve min z

st Xe€ M2, 2x2 +Xy <z
2xp -3)2+2xy-2)2- 427,

which yields x; = (1. 4, 1.1),2,-= 7.2 and

f1(x5 A2) =22.64, 5 =5, f3=72.
Step 8 : The set of all parameters corresponding to 6{;, 'z‘;) , where
I=1{1,2,3}, J={1,2), S=(1} takes the form
* A i ~
S@W= o S(2, 22)
={(A,v,e): 14 ).1 +22 4, =172,
€1 2337, g9225, €323.6 and n20.5].

APPENDIX (A)

Trade-off information [3).

Let lkj(x°), =12 .,m, j#k be the Kuhn-Tucker multipliers
corresponding to the e-constraints of Py(A, v,€) where x© Solves PL(A, V,E):
(i) Ifall lkj(x") < o for each j, then the efficient surface in the objective space

around the neighborhood of f© = F(x°) can be represented by fi = 6.y,
fiey 10 - ) and

e B
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f] .
A (X°) = -%5 - foreachj,j=1,2,...,m,j#k (Ap.
F-F

f;
Thus each ).kj(x") represents the efficient partial trade-off rate between fi. and

fj at F° when all other objectives are held fixed at their respective values at

x°.

(i) TfAy(x°) > o for some j # kand A1 (X°) = 0, for some 1=k, the efficient
kj

surface in the neighborhood of F° can then be expressedas ), = fi ('13‘), where F

is a vector consisting of all fJ withhg (x°) > o. Also, each Ay (x°) that
is strictly positive can be interpreted as a trade-off rate, that exhibits an exchange
between fy. and fJ while each objective f} such. thathia (X°) = 0 also changes.

Thus if xid >0 t:or each 1.¢ k, then 7\;:1 approximates a local partial
trade-off at a point x! where 7\';(1 is the Kuhn-Tucker multiplier associated with
the constraints fj(x) < ei To move from x! to some other locally efficient
point in the neighborhood of xi ?\jd units of fy will be given up per one
unit gain of f} (or vice versa), with all other objectives remaining constant at the
level of fl(xi), 1#k and j and therefore if 7»1121 > o for all 1 # k, we ask the DM

foreachl#k:

qu. 1 : “given that fJ = t}(xi) for all j = 1, ..., m, how (much) would you like to

decrease fy by ;&d units for each one unit increase in f| will all other fJ
remaining unchanged 7",

If we make a smal change of 3 fJ units in f}; and setting w;=0, where

le o= (j/1 <j<n,j#k Ag>o), then fy; changes by - Ay Of;
and each f;, where )‘kj = 0, also changes by Md 5f;, and each fj, where ij =

ox(g)

381

o,also changes by  (Vfj(x!) ) Of; units,

qu. 2 : Given that f_] = fj(xi) for all j = 1, ..., m, how (much) you like to decrease
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fy by 7¥k1 units and change f by Vf( ) Qi ax(gl) units, while increasing fj

by one unit 2. dgp
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