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Abstract:

This study introduces a theoretical analysis for functionally graded materials (FGMs)
of T-section beams. Analytical methods are set in the form of equations using the
effective principal axes, in order to provide a method for predicting the normal stress
distribution of the FGMs beam under both axial load and bending moments. Considering
the elastic modulus to be an exponential function, the effect of the non-homogeneity
parameter on the distribution of the normal stress, as well as on the position of the neutral
axis along the beam height, is discussed for several different loading cases. The results
obtained show that the non-homogeneity parameters have great effects on the normal
stress distribution and on the position of the neutral axis. This indicates that, with the
increase of the absolute value of the non-homogeneity parameter, the normal stress at the
less hard region in the cross section decreases. Moreover, the normal stress at the harder
region increases, and the neutral axis transfers toward the harder region.

Keywords Bending Moment, Functionally Graded Materials, Neutral Axis, Normal
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Many researches have been carried out

1. Introduction to study the mechanical analysis of the

Functionally  graded  materials FGMs components. Li et al, [1] have
(FGMs) have been widely used in studied the mechanical model for
modern industries including aviation, recta.ngular FGMs unde; a"i_al _load and
aerospace, mechanical, transportation, bendmg‘ moments _ 51.mphfy1ng the
energy, electronic, chemical, biomedical assumption for the principal axes..Whlle
and civil engineering. The functionally El Megharbel et al., {2] have studied the
graded matentals (FGMs) are a class of FGM beam with 1-SG-Ct10[l under axial
advanced composites characterized by load and one bending moment. At
the gradual variation in composition, present, some researches are interested
microstructure and material properties, in studying the T-section beams

especially with FGMs,
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The study of the functionally graded
material (FGM) has already been tackled
by many investigators (Li et al., [l];
Zhen-yi, [3]; Ozturk and Erdogan, [4}).

Wang et al. [5] have analytically
investigated the axisymmetric bending
of circular plates whose material
properties vary along the thickness. The
transverse loads are expanded in terms
of the Fourier-Bessel series, and the
solutions corresponding to each item of
the series are derived by a semi-inverse
method.

In - thermal problems, An elastic—
plastic stress analysis of FGM plates
under a transient thermal loading cycle,
which consists of heating followed by
cooling, was carried out by Nemat-Alla
et al. [6]. Whereas, the mechanical and
thermal stresses in a functionally graded
rotating disk with variable thickness due
to radially symmetry loads were
discussed by Bayat et al. [7].

The elastostatic problem of a hollow
non-homogeneous cylindrical tube under
internal loading have been analytically
considered by Theotokoglou and
Stampouloglou [8]. The static and
kinematic shakedown of a plate made of
functionally graded materials (FGMs)
was analyzed by Peng et al. [9]. While
Tung et al. [10] have investigated the
stability of FG plates under in-plane
compressive, thermal and combined
loads. Material properties were assumed
to be temperature-independent, and
graded in the thickness direction
according to a simple power law
distribution. Equilibrium and
compatibility equations for FG plates
were derived using the classical plate
theory. The resulting equations are
solved by Galerkin procedure.

Li et al. [11] have studied the transient
response of FGMs with a finite crack
under  anti-plane  shear  impact.

Moreover, the anti-plane impact fracture
analysis was performed for a weak-
discontinuous interface in a symmetrical
functionally graded composite strip by
Li and Lee [12]. Carrera et al. [13] have
evaluated the effect of thickness
stretching in plate/shell structures made
by materials which are functionally
graded (FGM) in the thickness direction.
This was achieved by removing the
transverse normal strain in the kinematic
assumptions of  various  refined
plate/shell theories.

Ozturk and Erdogan [4] have
calculated the stress intensity factors as
functions of the non-homogeneity
parameter  for  various  loading
conditions. The anti-plane fracture
analysis, for a functionally graded
coating—substrate system, with a crack

inclined to the weak/micro-
discontinuous interface, was performed
by Li and Lee [14].

The stress distribution in rotating two
composite structures of functionally
graded solid disks was discussed by
Zencour [15].

The mechanical property graded of the
examined material, such as the elastic
modulus or the shear modulus in the
pervious studies, is set to be some
certain function such as a linear
function, a power function, an
exponential function or even a
hyperbolic function, .

The most widely-used component in
engineering is the beam, for whose
mechanical behaviour has an important
significance for studying. Thus, the aim
of this paper is to present a theoretical
analysis for the FGMs of T-section
beams under axial load and bending
moments to determine the effect of the
non-homogeneity parameter on the
normal stress distributions.



Mansoura Engineering Journal, (MEJ), Vol. 36, No. 1, March 2011

2. Theoretical Analyses

The mechanical model of the FGMs
beam, of the T-section considered in this
study is shown in Fig. 1. In which H, B,
h and b are the height and width of the
T-section and the thickness of the flange
and web of the section, respectively. The
beam is subjected to an axial load N, and
two bending moments M, and M,. The
elastic modulus is assumed to vary
continuously in the two directions: the
height and the width directions. Thus the
elastic non-homogeneity, in the fixed
coordinate system OXYZ (Fig. 1), is
assumed to be in the following
exponential form, Konda and Erdogan
[16]

E(Y,Z) = E¢""*P* (1)

where E, is the elastic modulus at the
origin point O; B; and B; are the non-
homogeneity parameters in Y and Z
directions respectively.

For the above-mentioned FGM beam,
the traditional centroidal principal axes
are no longer suitable for the analysis of
the normal stress. The following analysis
is based on the effective principal axes
through a new coordinate system oxyz
(see Fig. 1) with the point 0o(0, a;H, ;B
)in OXYZ as a new origin where
y=Y-aH and z=Z-a,B (2)

are the effective principal axes,
whereas (;) and (u;) are the position
parameters of the effective principal
axes z and y respectively. The values of
the parameters (a;) and (0;) are related
to the non-homogenous parameters (3,
and B; which wili be determined later
on. In the new coordinate system oxyz,
the elastic modulus of the beam may be
expressed as follows:

E(y,2) = Ee"" (3)

where E, is the elastic modulus at the
point o(0, oyH, @B ) and may be
expressed as

El =FE e“’\ﬁl”*“:ﬁzﬁ (4)
The normal stress, in the x direction,

acting on the FGM beam may be
expressed as:

dx = E'eﬁﬂ*ﬁz-‘-gx (5)

The beam is assumed to be stressed by
an axial load (Nj) as well as the bending
moments M, and M, at the same tirhe as
shown in Fig. 1. Assuming the linear
strain produced by the axial force are the
same for the different points in the cross
section. Moreover, the curvatures
produced by the bending moments are
also identical. Therefore, the equation of
compatibility for the beam is expressed
as follows:

£, =8~ L+ = (6)
pz py

The previous equation assumed that
the beam is loaded by the axial force and
the bending moment simultaneously. &,
is the homogenous axial linear strain in
the cross section, p, and py are the radii
of curvature in the vertical and
horizontal plane of the beam,
respectively.

Assuming that:
hy Iy

Tl ye e dydz + J'].ye’3 Ve dydz = 0
by,

by by

™)

h] ‘h! bﬂ h]

IIzeﬂ‘y e’ dydz + ”'ze‘a"' e’dydz =0

byhy by by

(8)

(which are more accurate than the
assumption in Li [17])

Where the beam geometry constants
are:

B+b B-b
w25 w5

b,=b,-a,B,

M. 17
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bs=b-b, by =b, + b, ®
h=H-aH-h, h=-aH,
hy=h+h

Therefore, the position parameters a;
and ay of the effective principal axes z
and y may be expressed, from Egs. (7-8),
as

o, < AE =) -1+ e, + {H8 - 1" +[1-(H - BB ), (10)

Hpk,
{[é'ﬁ? —1j" + [@ﬁz + 1E]ﬁ: }]L»!"‘ {[Bﬁz -1} + l}ks
"7 ()
Bk,
Where

kl - (eblﬂz —ehh )’ kz = (e’fﬁz - 1)

ky = (e P01 + (e —et08 R

k, = (e(H-h)a. __1)’ k, = (eHﬂn - e(H-h)ﬂ.)

(12)

According to Eqgs. (10 and 11), it is
found that when the beam is non-
homogenous, along both y and z
directions, the effective principal axes z
and y are not the centroid axes. Whereas,

when the beam is rectangular (b=B,
h=H), the same formulae as in Li [1]

apply for the position parameters a; and
sz,

Furthermore, the equilibrium
equations of the above-mentioned beam,
under axial load and bending moments,
can be expressed as El Megharbel et al.
[17]:

N.t= Io'.rdA’ —M:= J‘O.xydA!

A A
M, = |o,2d4 (13)
A

Substituting in the previous equation
with Eqs. (5-6), yields to:

by by
N, = EI £, -——y—+—z—-]eﬁ"’e”1’ajzdz+ I g, ——Z-+—z—}eﬁ"'eﬂ"dydz= 0 (14

byhy pz py

by by 2
-M,=E [ eoy—l—+lz- e?e’ dydz + E,
' P, P

LI ¥

by by 2
M, =E, ”{a,,z -2 z—}eﬁ"’e""dydz +E, I

by P z P ¥
Applying Egs. (7-8) into Eqgs. (14-16)
the following can be obtained

y (17)

E,[—-’E’—+—]=—M: (18)
pz py

E, —-ic“—+-k'—‘]=My (19)

(20

P Py

fry

2
[ j[s,,y —y—+£]e”"e”‘:dydz =0(15)
p. P

hy by

¥

2
|(£"z LA —z—]e”"e”’:dydz =0 (16)

P P,
k6 = %A | p%1%h 2
- {a,e(“"')"' —a,fk, + @ e _ g, SH=0 }kz
ﬂzﬂﬂ%
(22)
ky = @MI — ameb}ﬂ:i'k’ + {(L'e"ﬂ: +a|:}km
B B3k,
(23)
ky =B B -1 4 b, g 41
(24)
ko = ((H - h2)ﬂ1 - l)eHﬂ' - (h”ﬁ, - l)e(H""m'
(25)
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b = {Eje"“a’ ——ase”’”‘}-k‘, + @e‘w‘ —adlcj

) B.Brks

(26)

a=(mp -1 +1,
Ca,=(mpB +1F +1,
ay, =((H-5,) -1) +1

ay = (hlﬁl _1)2 +1

a, =(b,f, - 1)2 +1

ag = (6,8, =1) +1 @7)

a,=((1-a,)BB, ~1) +1

ay = (e, BB, +1) +1

a, =b,, -1
a,=b,p, -1

ay, ":'(1"“2)3.62 -1
a,, =a,Bp, +1

According to (18) and (19):

1 kM. kM,

o: £, (ksz - J"77‘1‘11)

1 kM + kM, (29)

Py El(kaz ‘kvku)

Substituting in Eqgs. (20, 28 and 29)
with the rectangular beam condition
(b=B, h=H), an agreement with Li [l]
can be found in equation (20), and a
complete disagreement in Eqs. (28 and
29). This disagreement in the late
equations is due to the simplified
assumption in Li [1] rather than the
accurate assumption (Eqs. 7-8) in this
paper.

The total normal stress in the beam in
the x-direction may be obtained by the
aid of Eqgs. (5,6, 17, 28, 29) as

o,=cl+c" +o (30)

X

Where o/ is the normal stress due to
the axial force Ny (Eq. 4, 17), while o’

i
v

and o are the normal stresses due to

the bending moments in the vertical and
horizontal plane of the beam (Eq. 4, 28,
29), respectively. Therefore it can be
written in the following form:

ol = Mo poaraz 3y
EA

kM. + kM
O_U:__ 1 z 8 yE Y—aH B +3h,Z
x EI kg'—ka” (J( I k
(32)
Where o' is the normal stress related
to p.
kM + kM
o‘i’” _ M, T A E,,(Z —a B)eﬁ,r’+ﬁ12
EI (k: "k'.'ku) i
(33)
Where o is the normal stress related
t0 p,. Assume that o, + o, + o, =0
then the distance Y may be obtained as

N x{ksz - k'rkn

.____7_”_”_-'-_&__‘-_(2 _azB).,, alH
kM, + kM,

3. Results and discussion

The mathematical models for the
normal stress of FGMs for T-sections are
introduced in the previous section. The
effect of the  non-homogeneity
parameters (B, and ;) on the
distribution of the normal stress and on
the position of the neutral axis is
substantial. A schematic topology for the
hard region and the less hard region for
T-section FGM beam is illustrated in
Fig. 2 The distribution of the normal
stress along the height of the FGM beam
(from Y=0 to Y=H, see Fig. 1) is
illustrated in Figs. 3-10.

M. 19
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Taking a constant value for the non-
homogeneity parameter (§2) is a
reasonable simplified way to detect the
effect of the non-homogeneity parameter
(B1), which is almost the same effect of
the other the non-homogeneity
parameter (). The values of the non-
homogeneity parameter () is discussed
from almost a zero value (0.05) to a very
rigid value (B; =10). The effect of the
absolute value of the non-homogeneity
parameter (B;) on the normal stress o’

is illustrated in Figs. 3-4 with a constant
value for (Bz). When the beam is loaded
by the axial force Ny only, it was noticed
that the normal stress o in the less hard
region of the cross section is much lower
than that in the harder region. Whereas,
with the increase of the absolute value of
{(B1), the o! in the less hard region
decreases, whereas, that in the harder
region increases. Moreover the effect of
the negative sign of (B,) has a great
effect on the magnitude of o compared
to the positive sign of (B;) for the same

beam constants.
The effect of the non-homogeneity

parameter (B;) on the normal stress o’
distribution along the beam height is
shown in Figs. 5&6, with a constant
value for (B;). The normal stress o/
distribution is due to the curvature in the
vertical plane, when the FGM beam is
stressed by bending moments (M) and
(M,). As the absolute value of the non-
homogeneity parameter () increases,

the o/ in the less hard region decreases,
whereas, that in the harder region

increases. Moreover the negative sign of
(Bi) has a positive effect on the

magnitude of o compared to the

positive sign of (B,) for the same beam
constants (this conclusion was expected

due to the arrangement of (B;) in the
obtained equations).
H

Whereas the normal stress o

distribution along the beam height with
the effect of the non-homogeneity
parameter (3,), with a constant value for
(B2) is shown in Figs. 7&8. The normal

stress o)’ distribution is due to the

curvature in the horizontal plane, when
the FGMs beam is stressed by bending
moments (M,) and (M,). As the absolute
value of the non-homogeneity parameter

(B)) increases, the o in the more rigid

3
region of the cross section increases,
however, that in the less rigid region
decreases. Morcover, as shown above,
the positive sign of (B) has a negative

effect on the magnitude of o

X
compared to the negative sign of () for
the same beam constants.

The effect of the non-homogeneity
parameter (§3;) on the total normal stress

o, distribution along the beam height is

shown in Figs. 9-10, with a constant
value for (;). These results correspond
to the FGM T-beam stressed by axial
load (Ny) and bending moments (M,)
and (My), simultaneously. The results
demonstrate similar general trends
between Figs. 5-9 for ($;) >0 and Figs.
6-10 for (B;) <0; except that the values
are different due to the effect of the
normal force (N).

From Figs. 9-10, it can be indicated
that the value of (B,) has almost no
effect on the normal stress along the
beam height (H) at two points (0.07,
0.47) for (B;) <0 and (0.1, 0.5) for (B))
>0. From Figs. 3-10 it can be concluded
that if the absolute value of the non-
homogeneity parameter (B;) is 0.05,
which is almost a zero value, the normal
stress in the FGMs beam is varying
straightly with the beam height (H),
which means that the beam is related to a
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homogenous material. As the non-
homogeneity parameter (B,) increases,
the normal stress varies non-linearly
along the beam height.

The effect of non-homogeneity
parameter (B;) on the position of the
neutral axis along the beam height is
displayed in Figs. 11-12 for FGMs beam
under axial load and bending moments.
As the absolute value of the non-
homogeneity parameter (f;) increases,
the position of the neutral axis transfers
towards the hard region.

4. Conclusion

The mechanical model is established
for the functionally graded material
(FGM) beam with T-cross section, and
its agreement with a rectangular cross
section (FGM) is discussed. The effect
of the non-homogeneity parameters on
the normal stress distribution along the
beam height with different loading cases
for the functionally graded material
(FGM) for T-section beam was included.
The beam was subjected to an axial load
with two bending moments and it was
assumed that the elastic modulus varies
continuously, both in the height and the
breadth directions, with exponential
functions. The normal stress analysis of
the bending beam for T-sections was
carried in  the coordinate system,
consisting of the effective principal axes,
rather than the centroidal principal axes.

The effect of the non-homogeneity
parameters on the position of the neutral
axis is also examined. The present work
can provide a good reference for the
design of the functionally graded
materials of T-section beams in
engineering application.
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Fig. 1 The mechanical model of the bi-directional T-section FGM beam
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Fig. 4 The o! distributions along the FGM beam height (Y) with different (B;) values
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Fig. 10 The o, distributions along the FGM beam height (Y) with different (§;) values
(H=0.6m, B=0.3m, h=0.12m, b=0.06m, B,= 10, Ny=20kN, M,=M, =20kN.m)
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