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ABSTRACT

Many authors proposéd algorithms to transform the original IP ? prob-
lem into a Knapsack problem which may be easier to be solved by a DP? recur-
raion (Glover (1], Kendel, and Zionts [7]) .

Other authors transformed ihe IP problem inte a Group optimization
problem that strongly resembles the Knapsack problem . An optimal solution
to the transformed problem often yield an optimal solution to the original IP
problem from which it was derived { Gomory [2], ;é'hapim, [11]) .

Anothér approach is aeveloped by mixing the fnethods of DP and the
branch-and-bound principles . Morin and Marsten [9], has shown ﬁow branch-
and-bound methods can be used to reduce storage and, possibly, computa-
tional requirements in discrete dynamic programs (Jeromin, and Korner [6],
Kovacs [8]).

The purpose of this paper is to show the capability of utilizing Dynamic
Programming (DP) in solving Integer Programming (IP) problems .

'IP = Integer Programming, DP = Dynamic Programming.
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- Solving Integer Programming.

1. The Formulation of IP as a DP Model :

Consider the general integer programming problem :

(IP) : Max
. 3 .
Zcij ’
i=1
subject to
n .
Za’jz] S bl y ‘= 1)2, ey
gt
and

z; > Ointegers, j-= 1,2, ...,n.
The problem (IP) can be formulated as a dynamic programming model as fol-
Jows: :

1. Bach activity j (j = 1, 2, ..., n) may be regarded as stage (i.e. we have

n-stage decision problem) .
2. The level of activity z; (> 0) represents the alternatives at stage j .

3. However, m state parameters will be needed one for each constraint (i.e.

‘the state variables are of m-dimensional) .

Let (s1j, S2; , «. » Smj) be the states of the system at stage j, that is
the amounts of resources 1, 2, ..., m allocated to stage j, j+1, ..., n . Also let

fi(s1y, 825, ..., Smj) be the optimum value of the objective function for stages

o FHL, e m

The corresponding dynamic programming formulation becomes :
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fa(S1n s 520 5 o) Sma) = mar {caza}
0 < @inzn < Sin
,0=1,2, ..., m
- 0< 25 < [sin/0in]
Ji(s15 5 8255 oy smj) = maz {¢iz; + fira(s1; — @rj25,
0 L ai;z; < 855
ey Smi — Gy T5 )}

wherei=1,2, ... ,m,
j=1,2,.--,1’l—1,
0< si; <bforalli,j,

0 < z; < [sij/ai;] and [y] denotes the largest integer <y .

The above recursive relationship is of the backward type . Otherwise we can

make the same procedure by a forward recursive equation as follow :

fi(s11, 8214 o) Sm1) = maz {az:}
0 < 21 < [si1/ai]
IN(siv , SNy s SN) = maz {enzn+
0 <z < [siv/ein]
y N=1,2, .,n

In-1(s1n — GINZN , ..., SN — GmNEN)}



Solving Integer Programming.

where z, ,j =1, 2, ..., nis the decision variable corresponding to stage j . This
recursive scheme has a practical computational value only when the number m

of state variables 1s small .

To demonstrate our solution procedure, consider the following simple

example :
Example 1.1 :

Max Z=z1+ 2
subject to 22y + %2, < 8
| z,+2, <8
and Z;, 3 >0, integer .
Define the decision variables as d; = 21 and ds = z, and let the stages corre-
spond to the variables z;, i =1,2.
Since the problem has two constraints, there will be two state variables to search

over . Denote these two state variables at the nth stage as e, , 8., 1n = 1,2

such that :
Ap-1 = Qp — Glndn )
ﬂn-—l = ﬂn — Q2ndn
stage 1 :

ff(‘h ) ﬂl) = Moz {d1}

OSdIS[8/2)8]
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stage 2 :
filaz, B2) = Maz {dz+ fi(e1, B1))
0<d; <8, 8/2]
where ay =as —dy , By =y — 2d> .

Stage 1 : calculations

a 0 1 2 3 4 5 6 7 8

b1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1] 0 0

1 0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1

2 0 0 1 1 2 2 2 2 2
0 0 1 1 2 2 2 2

3 0 0 1 1 2 2 3 3 3
0 0 1 1 2 2 3 3

4 0 0 1 1 2 2 3 3 4
0 0 1 1 2 2 3 3

5 0 0 1 1 2 2 3 3 4
0 0 1 1 2 2 3 3

6 0 0 1 1 2 2 3 3 4
0 0 1 1 2 2 3 3

K 0 0 1 1 1 2 3 3 4
0 0 1 1 1 2 3 3

8 0 0 1 1 1 2 3 3 4
0 0 1 1 1 2 3 3

Table 1.1

‘ * dy which yields highest stage n return
. /—

P dy /

f* ed————— f*(an, B,) for a given d,
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Stage 2 : calculations

d; Jo0]112]3]4] ] &

as =8

=28 3
Table 1.2

Hence the optimal solution :

filaz=8,p,=8) =5

di=2=2 — ay=ay—d,=8-2=6 N
Bi=fr-2y=8-4=4 ] " TITH=?

or

d=z3=3 —ay=5&pH=5—d]=2]=2

2. An Algorithm for Solving the Knapsack Problem :

Consider the éirnplest integer program, i.e., an integer program with only
one constraint, called the Knapsack problem . We can express the Knapsack

problem as follows :

(Kp) : Max
n
Zc,':zj (¢; >0, integers)
J=1
subject to

n
Zajxj <b (ajandb +veintegers)
1=1
z; > 0,integer = 1,2, .., 1) .

In order to solve the above problem (Kp), let us define a new function

f(k,B) to be the maximal value of the objective function using only the first k
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(k=1,2,..,n)items . When the weight limitatienis § (f#=10,1,..,N).
That is The problem (IP) can be formulated aé a dynamic programming model

as follows :

k
f(k,B) = maz El a;%;
1=

. k (1)
subject to Y a;z; < B
=1
. z; >0, integer (=1, 2, .., k).
Isolating z; in (1) yields,for k =2, ..,nand $=10,1,..,N.
: k=1
f(k,B) = maz aTrt ) 6%
1=1
z=0,1, .., [ﬂ/ak]
v k-1
subject to 6;z; < B —ara:
&
z; 20, integer (=1, ..., k~1).
k-1
=czzr + maz Y x5
=1 )
k-1 (2)

subject to 2 68 <P —arTs
.=
z; >0, integers (=1, .., k—1).
By definition, the problem in brackets has an optimal f(k—1, 8~ a; z;) . Thus,

fork=2,..,nand § =46,1, .., N (2) can be rewritten as :
. . f(k, ) = maz (cexi + flk— 18— ar2:)) | (3)
2 =0, 1, ..., [B/az]
To start the computations, first we have to find .
f(1,8) = maz azi
0< 2 < [B/ai]

_{0 if g <0 (wherezy =0)
L [Ble]e if g >0 (where zy =[8/a,])
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and using recursive relation (3) to find f(2,8), ..., f(k,B), for = 0, 1; vy N,
by using the initial condition £(0,8) =0 for # =0, ..., N and f(¥,0) = 0 for
k=1, .,n.

To solve a Knapsack problem with bounded variables and an equality
constraint we add the initial conditions f(0,0) = 0 and f(0,8) = —coc for g =

1, ..., N in place of f(0,8) =0 . This allow us to use equation (3) directly .

2.1. The Algorithm :

Step 0 : (Initialization) :

Set f(0,0) =0, and f(k,0)=0fork=1,..m.
If constraint of type < , then set f(0,8)=0,=1, .. ,N.
Otherwise if constraint of type = , then set f(0,4) = —c0, =1, .., N . Go to

step 1.
Step 1:

Setk =1. If¢; < 0thenset f(1,8) = 0, otherwise set f(1,8) = [#/a1]c,

(where z; = [8/a1]) . Go to step 2.
Step 2 :

Set k = k+1. For all 8 < a;, set f(k,8) = f(k— 1,8) . Otherwise
compute f(k,8) = maz (cez + f(k— 1,8 — azz1))
Ty = 0, 1, ceey Uk

(where u; is an upper bound for z) . If k < n then return to step 2 . Otherwise

go to step 3 .
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Step 3 :

Terminate with optimal integer solution Z = f(n,N) .

End (of algorithm) .
Example 2.2 :

Maximize 3z; 4+ 515+ 23+ 24
subjectto 22y +41,+ 325+ 2124 <5
71<1,22<1,23<1, .

zy ,%y ,%3,%4 > 0 ,integers .

Using the recursive equation (3) as shown in table 1.

8
k G Ci 0 1 2 3 4 5=
1 2 3 jA,A|0 0 3 3 3 3 |
z |- [o] 111 1
2 4 5 f28)(0 0 3 3 5 5
z2 |- 0 ‘0 0 1
3-3 1 f38)(0 0o 3 3 5 5
gz |- 0 0 0 0 [0]
n=4 2 1 f(4,){0 0 3 3 5 5
g |- 0 o0 0 0 [0}
Table 1.3.

The optimal solution is : f(4,5) =5 with z4 = 0 (N is reduced to 5
-2(0) = 5), z3 = 0 (N is reduced to 5 - 3(0) = 5), 2 = 1 (N is reduced to 5 -
4(1) = 1), and z; = 0 . The optimal values of the variables are boxed .

3. Solving IP Problems by DP Enumeration :

Greenberg (4), has proposed some integer programming methods in a
dynamic programming framework . In this section we shall introduce a proposed

algorithm for the solution to the IP problem by means of DP enumeration .
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" First, we find the continous linear programming solution by relaxing the integer
restriction on the variables . If the continuous solution is fractional, we develop
linear congruences that the nonbasic variables must satisfy, which is added as
constraints.

" Consider the integer programming problem :
Find integers z; > 0for j=1,2, ..., n
that

n
minimize Z =3 ¢;z;
. (4)
subjectto Y aj;z;=b;, i=1,2, .., m
i=

where a;; , b; , and ¢; are given integer constants .
Remark : we consider the case where some or all of the variables have upper

bounds . Thus we include the case where the z, is 0-1 . Problem (4) may be

solved as a LP by relaxing the integer constraints to obtain the optimal canonical

form : _
min Z=2,+ Y Tzj,
jENB (5)
subjectto zp+ Y, Tjz;=bi, i=1,2,..,m
JENB

where B = the set of indices of the basic variables, NB = the set of indices of
the nonbasic variables .

The vectors a; (j=0 & j € NB) are column vectors . The components of a, are
nonnegative . If @, is all ineger, then z; = 0 (j € NB), 2p = @, is an optimal
solution . Otherwise if any of the z; (j € NB) are fractional then the equivalent
Knapsack problem is :

minimize Y, ¢1;

JENB
subject to z Byz; =8, mod1l, (6)
and -0 < :cJ <Uj, z;integer, j ENB
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where f; are the columns of fractional parts of the a; from (5) . Now, to solve

the prdblei-n (6), we form the Knapsack function :

F(B) =min E 6z | Z Biz; = B mod 1, z; < U; @amn
JENB JENB

which may be written as the dynamic programming recursion
F(p) =min [e; + F(8 - 5;) (1)

where the ugtnhents of F takes modulo 1 . The recursion in (8) may be solved

as a simple enumeration by noticing that :

F(ﬂy) =cCr (1 9)
where
= min ¢; ‘ (20)

Then from F(8 - 8,) by replacing 8 by g — B in (8) and we substitute the result
for the F(8 — f,) term on the R.H.S. of (8) . As

F(8- ) =minle; + P(8 - 8 - )

we then can produce another immediate solution, keeping the upper bounds U
are not violated while performing the enumeration . To solve the integer program

(5) we stop the enumeralfon when F(8,) is calculated .

3.1. The Algorithm :

Step 1 :

_Suppose that the set of non-basic indices NB = (1, 2, ..., m) . Then list

the values of the program as :
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" Solving Integer Programming.

1 Z 3 .. . . m
.C]'. Co C3 T
Br B2 Bz - . . PBm |
z; =0, j=0,1,...,m.
Table 1.4.
Go to step 2.
Step 2 :

Given the list, find ¢, = min ¢; for all unmarked columns in all sections.

¥ 8, = B, then mark the column . Go to step 4 . Otherwise mark the column.

Got.osﬁep3.

Step 3 :

Add a new section of columns to the list, if possible as follows :
(i) Calculate ¢} = ¢ +¢; , ;= B, + f; (mod 1) Vj € NB.
(i.e. the values ¢; & f; are taken from the original list in step 1) . Where

z; < Ujfor j #r and
Log1+1<U, forj=r

for the section containing the newly marked column .
(i) Add the columns labelled by j in the new section with values ¢; and By -
(i) Under the section added write the z, values from the section containing the

newly marked column . Set z, =z, + 1 for the section . Go to step 2 .

Step 4 :

Take as a trial solution the values of the variables found below the section

where §, = B, appears with z, increased by one .
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Tf the constraints in (5) are satisfied then the solution found is the opti-
mal integer selution to the original integer program (4) . Otherwise go to step
3.

End (of algorithm) .
Example 3.2:

Minimize _5.’L’1 + 7.’L‘2 + 102‘3+ 3z4 + z5
subject to  x; -3z, +5z3+ T4 -435 22
—2.‘171'{"6.'32-3.?3 -22‘4 +2$5 20

+ 22 +223- 24 - 25 21

and 0 < z; <1, 2, integer , j=1, ..., 5.

Using the Lexic. dual simplex method to find the continuous solution, we have

the equivalent problem :

Min 9 -}393:1:1 + %x—&- 22y + 2z Lz,

subject to  ~Z7 - Bry+ Baogt 6 + L27- Hag= 1
- 32y + 3 - §24 - 575 - 327 - S7s =2
- %$1+ T2 - %m + 325 - %37 - %378 = -3-

and 0 < z; <1, z; integer , j=1, ..., 5.
z; >20,)=6,T7,8.

and develop the congruences

2 8 k3 1 Sp.= 2
521 + 324k 535t oA oy =5 mod 1
7 1 3 8 3p. =8
3%1 + 5%4 5Tt G 5T3= g mod 1
5 204 gt Tpy 6o =3
5T1 + §%4k gt gat gTs=gmod ]

Step 1: The problem is listed in tableau T1; 8 = (3/9,6/9, 3/9), 2z, = 9.

Step 2 : r = T in tableau T1, ¢, = 24/9.
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] 1 4 5% ¥ 8 14 5% 7% 8
. 93 136 42 2 ™ 117 18 66 48 108
7 [ 9 S 9 9 E] 9 9 E) 9

5/9 2/9 ;j/Q

2/9 8/9 4/9 1/9 6/9 3/9 0
By T/9 1/9 5/9 8/9 3/9 6/9 0  4/9 T/9 2/9
5/9 2/9 1/9 T1/9 6)9 3/9 0  8/9 5/9 4/9

z; =10 =1
T1 T2
1 4 8 1 4 5 7 8 1 4 8
e w2 2 72 7

6/9 3/9 1/9 4/9 1/9 6/9 3/9 8/9 7/9 4/9 2/9
3/9  6/9 8/9 5/9 8/9 3/9 6/9 1/9 2/9 5/9 1/9
6/9 3/9 17/9 1/9 1/9 6/9 3/9 2/9 4/9 1/9 5/9

zs=1,27,=1

Ty =1 zr=1

T3 T4 T5

Step 3 : We form tableau T2. Mark column 7 of tablean T1.

Step 2 : r = 5 in tableau T1, ¢, = 42/9.

Step 3 : We, .;form tableau T3. Mark column 5 of tableau T1. We need
not add a column’ hea.ded by 7in T3 because it would duplicate the 5 column in
T2. Also we do not add a 5 column in T3 since zs is at its upper bound in T3.

Step 2 : r = 7 in tableau T2, ¢, = 48/9.

Step 3 : We form tableau T4. Mark column 7 of tableau T2.

Step 2 : r = 5 in tableau T2, ¢, = 66/9.
Step 3 : We form tableau T5. Mark column 5 of tableau T2. The

solution is now possible in the 7 column in T4. Wehave 2y, = 3,11 = 24 = 25 =

zg = 0 . Substitute z7 = 3 into constraint equations, we obtain z¢ =0, zg = 1

,and zo =1 .
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Thus we have achived the optimal solution with objective value 9+ %2 =
17 . Note that if 76 , 73 , or z2 are not feasible, other solutions are possible;

e.g., the 1 column of (T2), the 4 column of (T3), and others if the enumeration
is continued .

4. Conclusions :

In section 1, formulation the IP as a DP model is'imraroduced . Unfor-
tﬁnately, the preéence of multiple state variables creates major difficulty in the
solution of DP problems from computational viewpoint . This is called the curse
of dimensionality in DP . Thus for large pfoblems this 1s not recommended as a
_general approach .

In sect;.ion 2, we presented algorithm for solving the Knapsack problem.
For small problems (when the numberé of variables, and the constants are rela-
tively small) the DP approach performs well . The problem constants must be
+ve, and integers, the variables must be bounded also . For variable z; with-
out upper bound, we simply solve a linear program : maxm‘uze z; subject to
the constraints of the original prbblem . The -ve coefficient variable z; may be
transformed to a +ve coefficient, by sett.in'g-x,- =U; - :é,' (whére U; ié the upper
bound for the variable z;) .

The algorithm discussed in section 3, isrproposed by Greenberg [3] .
Indeed, this is an enumerative method in a DP framework . The method can be
used to solve the important class of problems in which the variables have upper
values .

From the foregoing discussion, we can deduce that, the DP technique
is not recommended as a general approach for solving the IP problems, since it

suffers from dimensionality problem .
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Although, the branch-and-bound methods have the advantage of solving
both the IP and MIP ?, however, it requires extremely large computer storage
capacity . For problems with many variables . Thus the mixture of the branch-
and-bound and the DP may have a double advantage . The first, is the generality
of branch-and-bound in solving the IP and MIP problems . The second, is the
advantage of utilizing DP from computation efficiency viewpoint . For example,

the DP technique may be used in branch and bound for computation of bounds,

also it may be used for fathoming critera .
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