
Sci. J . Fac. Sci. Menofiya Ciniv. V X VI (1992) 79-96

SOLVING INTEGER PROGRAMMING
PROBLEM UTILIZING DYNAMIC -

PROGRAMMING
N. EL-RAMLY

Menofiya University, Shebin-El-Kom, Menofiya, Egypt.

A. ELKASSAS

Institute of National Planning, Nasr City, Cairo, Egypt.

ABSTRACT

Many authors proposed algorithms to transform the original IP ' prob-

lem into a Knapsack problem which may be easier to be solved by a DP' recur-

raion (Glover [I], Kendel, and Zionts 171) .
Other authors transformed the IP problem into a Group optimization

problem that strongly resembles the Knapsack problem . An optimal solution

to the transformed problem often yield an optimal solution to the original IP
I

problem from which it was derived (Gomory [2], Shapiro, [ll]) .
Another approach is developed by mixing the methods of DP and the

branch-and-bound principles . Morin and Marsten [9], has shown how branch-

and-bound methods can be used to reduce storage and, possibly, computa-

tional requirements in discrete dynamic programs (Jeromin, and Korner [6],

Kovacs [a]).

The purpose of this paper is to show the capability of utilizing Dynamic

Programming (DP) in solving Integer Programming (IP) problems .

'IP Integer Programming, DP Dynamic Programming.

Solving Integer Programming.

1. The Formulation of IP as a DP Model :

Consider the general integer programming problem :

(IP) : Max

subject to
n

C q x j <a, , i = 1 , 2 , ... , m ,
3 =l

and

x, 2 0 integers , j = 1,2, ... , n .

The problem (IP) can be formulated as a dynamic programming model as fol-

-lows:

1. Each activity j (j = 1, 2, ..., n) may be regarded as stage (i.e. we have

n-stage decision problem) .

2. The level of activity y (1 0) represents the alternatives at stage j .

3. However, m state parameters will be needed one for each constraint (i.e.

the state variables are of m-dimensional) .

Let (slj , szj , ... , s,) be the states of the system a t stage j, that is

the amounts of resources 1, 2, ..., m allocated to stage j, j+l , ..., n - Also let

f;(s~, , 32, , ... , sm,) be the optimum value of the objective function for stages

j, j+l, ..., n .
The corresponding dynamic programming formulation becomes :

-
80

N. El-Rarnly & A. El-Kassas.

where i = 1, 2, ... , m ,
j = 1, 2, ... , n-1 ,

0 5 s;j 5 b, for all i, j ,
0 5 x j 5 [s ~ ~ / u ; ~] and b] denotes the largest integer _< y .

The above recursive relationship is of the backward type . Otherwise we can

make the same procedure by a forward recursive equation as follow :

Solving Integer Programming.

where x, , j = 1 , 2 , ..., n is the decision variable corresponding to stage j . This

recursive scheme has a practical computational value only when the number m

of state variables is small .

To demonstrate our solution procedure, consider the following simple

example :

Example 1.1 :

Max = X I $ 3 2

subject to 2xl +x2 < 8
$ 1 + 2 2 < 8

and x1 , x2 2 0 , integer .

Define the decision variables as dl = xl and d2 = x2 and let the stages corre-

spond to the variables x j , i = 1,2 .
Since the problem has two constraints, there will be two state variables to search

over . Denote these two state variables at the n& stage as c ~ , , ,B, , n = 1,2

such that :

stage 1 :

stage 2 :

where el = cu2 - d2 , jJ1 = - 2d2 .

s

Stage 1 : calculations

Table 1.1

d, which yields highest stage n return

Bn ?<--
f' (a,, pn) for a given d ,

83

Solving Integer Programming.

Stage 2 : calculations

Hence the optimal solution :

2. An Algorithm for Solving the Knapsack Problem :

Consider the simplest integer program, i.e., an integer program with only

one constraint, called the Knapsack problem . We can express the Knapsack

problem as follows :

(Kp) : Max

(cj 2 0 , in tegers)

subject to
n

a j z j _< b (a, and b + we in tegers)
j=1

x, 2 0 , integer (j = 1, 2, ..., n) .
In order t o solve the above problem (Kp), let us define a new function

f (k , ,B) to be the maximal value of the objective function using only the &st k

N. El-Ramly & A. El-Kassas.

(k = 1, 2, ..., n) items . When the weight limitation is < (p = 0, 1, ..., N) .

That is The problem (IP) can be formulated as a dynamic programming model

as follows :

subject to C ajxj Ci <
i =l

Isolating xl in (1) yields, for k = 2, ..., n and B = 0, 1, ..., N .

,=l
x = 0, 1, ...a P / a k]

k - 1
subject to ajxs 5 < - akzk

,=l
x, > 0 , integer (j = 1, ..., k - 1).

j=1
xj > 0 , integers (j = 1, ..., k - 1).

By definition, the problem in brackets has an optimal f (k - 1 , j3 - ar st) . Thus,

for k = 2, ..., n and @ = 0, 1, ..., N (2) can be rewritten as :

To start the computations, first we have t o find .

Sohing integer Progmmmmg.

and using recursive relation (3) to find f (2, ,4), ..., f (k , /I), for @ = 0 , 1 , ..., N ,

by using the initial condition f (0 , /3) = 0 for ,0 = 0, ..., N and f (k , 0) = 0 for

To solve a Knapsack problem with bounded variables and an equality

constraint we add the initial conditions f (0,O) = 0 and f (0 , B) = -co for ,4 =

1, ..., N in place of f (0 , @) = 0 . This allow us to use equation (3) directly .

2.1. The Algorithm :

Step 0 : (Initialization) :

Set f (0 ,O) = 0 , and f(k,O) = 0 fork = 1, ..., n .
If constraint of type 5 , then set f (0 , B) = 0 , /I = 1, ..., N .
Otherwise if constraint of type = , then set f (0 , B) = -w, /3 = 1, ..., N . Go to

step 1 .

Step 1 :

Set k = 1 . I f cl 5 0 then set f (l,,4) = 0 , otherwise set f (1 , B) = [,4/al]cl

(where xi = [p / a l]) . Go to step 2 .

Step 2 :

Set k = k+l . For all @ < ak, set f (k , @) = f (k - 1,B) . Otherwise

X k = 0 , 1 , -.., uk

(where uk is an upper bound for sk) . If k < n then return to step 2 . Otherwise

go to step 3 .

N. El-Ramly & A. El-Kassas.

Step 3 :

Terminate with optimal integer solution Z = f (n, N) .
End (of algorithm) .

Example 2.2 :

Maximize 3 x1 + 5 xz + 53 + 2 4

subject to 2 xl + 4 xz + 3 23 + 2 24 5 5,

x1 , x2 , x3 , x4 2 0 , integers .

Using the recu~sive equation (3) as shown in table 1

The optimal solution is : f(4,5) = 5 with x* = 0 (N is reduced to 5

- 2(0) = 5), x3 = 0 (N is reduced to 5 - 3(0) = 5), xz = 1 (N is reduced to 5 -

4

4(1) = I), and XI = 0 . The optimal values of the variables are boxed .
3. Solving IP Problems by DP Enumeration :

- 0 o o o I o / .

Greenberg (41, has proposed some integer programming methods in a

Table 1.3.

dynamic programming framework . In this section we shall introduce a proposed

algorithm for the solution to the IP problem by means of DP enumeration .

Solving Integer Programming.

First, we find the continous linear programming solution by relaxing the integer

restriction on the variables . If the continuous solution is fractional, we develop

linear congruences that the nonbasic variables must satisfy, which is added as

constraints.

Consider the integer programming problem :

Find integers xj 2 0 for j = 1, 2, ..., n .
that

n
minimize Z = C cjxj

j=1

subject to C ajjxj = bi , a = 1, 2, ..., m
j =1

where a,, bi , and cj are given integer constants .
Remark : we consider the case where some or all of the variables have upper

bounds . Thus we include the case where the xj is 0-1 . Problem (4) may be

solved as a LP by relaxing the integer constraints to obtain the optimal canonical

form :
man Z=Zo+ C i ~ j x ,)

j € N B
subject to tg + C Z , j ~ j = b; , a = I , 2, ..., rn

j € N B

where 3 = the set of indices of the basic variables, NB = the set of indices of

the nonbasic variables .
The vectors a, Cj=O & j E NB) are column vectors . The components of a, are

nonnegative . If a, is all ineger, then xj = 0 (j ~i E), XB = a. is an optimal

solution . Otherwise if any of the x, (j E NB) are fractional then the equivalent

Knapsack problem is :

minimize cjz j
jENB

subject to b3x3 - Po mod 1 ,
jENB

and 0 < x3 5 Ul , x j integer, j E N B .

N. El-Ramfy & A. El-Kassas.

where pj are the colmps of fractional parts of the aj from (5) . Now, to solve

the problem (6), we form the Knapsack function :

which may be written as the dynamic programming recursion

where the arguments of F takes modulo 1 . The recursion in (8) may be solved

as a simple enumeration by noticing that :

where

(; = min cj
J C N B

(20)

Then born F(B - /3,) by replacing B by /3 - B, in (8) and we substitute the result

for the F (p - B,) term on the R.H.S. of (8) . As

F (B - / %) = m i n [~ j + F (B - B j - @ I)]
J

*

we then can produce another immediate solution, keeping the upper bounds U

a are not violated while performing the enumeration . To solve the integer program

(5) we stop the enurneraaton when F (p o) is calculated .

3.1. The Algorithm :

Step 1 :

Suppose that the set of non-basic indices NB = (1 , 2 , ..., m) . Then list

the values of the program as :

Solving Integer Programming.

Table 1.4.

Go to step 2 .

Step 2 :

Given the list, find c, = min c j for all unmarked columns in all sections.

E/3, = ,&, then mark the column . Go to step 4 . Otherwise mark the column.

Go to step 3 .

Step 3 :

Add a new section of columns to the list, if possible as follows :

(i) Calculate cl = c, + cj , s 8, + p, ((mod 1) V j E N B .
6.c. the values cj & pj are taken from the original list in step 1) . Where

z j < q f o r j # r and

r,+l+l < U, f o r j = r

for the section containing the newly marked column .
(ii) Add the columns labelled by j in the new section with values ci and .

(SJ Under the section added write the x, values &om the section containing the

newly marked column . Set x, = x , + 1 for the section . Go to step 2

..
Step 4 :

Take as a trial solution the values of the variables found below the section

where @, = /lo appears with x , increased by one .

N. El-Rarnly 8r: A. El-Kassas.

If the constraints in (5) are satisfied then the solution found is the opti-

mal integer solution to the original integer program (4) . Otherwise go t o step

3 .

End (of algorithm) .

Example 3.2 :

Minimize 5xl + 7x2 + lox3+ 3x4 + x5
subject to xl - 3x2 + 5x3 + x+ - 4x5 > 2

and 0 _< x; 5 1 , x; integer , j=l, ..., 5 .

Using the Lexic. dual simplex method to fmd the continuous solution, we have

the equivalent problem :

and 0 < xj cj 1 , xj integer , j=l, ..., 5.

x, 2 0 , j=6, 7, 8.

and develop the congruences

Step 1 : The problem is listed in tableau TI; j3 = (3/9,6/9,3/9), z,, = 9.

Step 2 : r = 7 in tableau TI, c, = 24/9.

91

Solving Integer Programming.

Step 3 : We form tableau T2. Mark column 7 of tableau TI.

Step 2 : r = 5 in tableau TI, c, = 4219.

Step 3 : We-form tableau T3. Mark column 5 of tableau TI. We need

not add a column headed by 7 in T 3 because it would duplicate the 5 column in

T2. Also we do not add a 5 column in T3 since x5 is at its upper bound in T3.

Step 2 : r = 7 in tableau T2, c, = 4819.

Stev 3 : We form tableau T4. Mark column 7 of tableau T2.

Step 2 : r = 5 in tableau T2, c, = 66/9.

Step 3 : We form tableau T5. Mark column 5 of tableau T2. The

solution is now possible in the 7 column in T4. We have x7 = 3, X I = x4 = x5 =

xs = 0 . Substitute x7 = 3 into constraint equations, we obtain xs = 0 , xs = 1

, and xz = 1 .

N. El-Ramly & A. El-Kassas.

Thus we have achived the optimal solution with objective value 9+ 7 =

17 . Note that if xs , x3 , or x2 are not feasible, other solutions are possible;

e.g., the 1 column of (T2), the 4 column of (T3), and others if the enumeration

is continued .

4. Conclusions :

I
In section 1, formulation the IP as a DP model is introduced . Unfor-

tunately, the presence of multiple state variables creates major difficulty in the

solution of DP problems from computational viewpoint . This is called the curse

of dimensionality in DP . Thus for large problems this is not recommended as a

general approach .
In section 2, we presented algorithm for solving the Knapsack problem.

For mall problems (when the numbers of variables, and the constants are rela-

tively small) the DP approach performs well . The problem constants must be

+ve, and integers, the variables must be bounded also . For variable xj with-

out upper bound, we simply solve a linear program : maximize x, subject to

the constraints of the original problem . The -ve coefficient variable x, may be

transformed to a +ve coefficient, by settin'g x, = Uj - xj (where Uj is the upper

bound for the variable xi) .
The algorithm discussed in section 3, is proposed by Greenberg [3] .

Indeed, this is an enumerative method in a DP framework . The method can be

used to solve the important class of problems in which the variables have upper

values .
From the foregoing discussion, we can deduce that, the DP technique

is not recommended as a general approach for solving the IP problems, since it

suffers from dimensionality problem .
93

Solving Integer Programming.

Although, the branch-and-bound methods have the advantage of solving

both the IP and MIP 2, however, it requires extremely large computer storage

capacity . For problems with many variables . Thus the mixture of the branch-

and-bound and the DP may have a double advantage . The first, is the generality

of branch-and-bound in solving the P and MIP problems . The second, is the

advantage of utilizing DP from computation efficiency viewpoint . For example,

the DP technique may be used in branch and bound for computation of bounds,

also it may be used for fathoming critera .

REFERENCES

1. Glover, F., "New Results for Reducing Linear Programs to Knapsack Prob-

lems", Management Science Report, Series 72-7, University of Colorado

(1 9 72).

2. Gomory, F., "On the relation between Integer and Non-Integer solutions

to Linear Programs", Proc. Mat. Acad. Sci., 260-265 (1965).

3. Greenberg, H., "A Dynamic Programming Solution to Integer Linear Pro-

grams", J. Math. Anal. Appl., 26 (2), 454-459, (1969).

4. -, "Integer Programming", Academic Press (1971).

5. Hadly, "Nonlinear and Dynamic Programming", Reading Mass., Addison-

Wesley, (1964).

- 6. Jeromin, B., and F. Korner, "A Hybrid Method For Solving Integer Linear

Programming Problems", Matematicky Obzor, 22 (4), 400-407 (1986).

2MIP = Mixed Integer Programming

N. El-Ramly & A. ECKassas.

7. Kendel, K., and S. Zionts, "Solving Integer Programming Problems by Ag-

gregating Constraints", School of Management, Working Paper No. 155,

November (1972).

Kovacs, L., "Solution of Linear Integer Programming Problems by Dy-

namic Programming", Math. Operations for Sch. U. Statist. 5, Heft 3,

163-176, (1974).

Morin, T., and R. Marsten, "Branch-and-Bound Strategies for Dynamic

Programming", Operations Research, Vol. 24, No. 4 (1 976).

10. Salkin, H.M., "Integer Programming", Addison- Wesley, (1 975).

11. Shapiro, J.F., "Dynamic Programming Algorithms for the Integer Pro-

gramming Problem - I : The Integer Programming Problem viewed as a

Knapsack type Problem", Opers. Res. 16, 103-121 (1968).

