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Abstract:Parkinson's disease (PD) is a heterogeneous disorderwith common age of onset. 

In this paper we will present a mathematical model for Parkinson's disease using delay 

differential equations, we study the stability of two models, one of which is to address the 

problem of positive feedback resulting from taking levodopa for a long time, and 

converting this delay differential equation into ordinary differential equation for small 

delays using Taylor series. Stability of the new equation was studied. Equations are 

solved and a comparison is made between the use of matlab codes dde23, ode45 and the 

use of the step method. 
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1.Introduction

Parkinson's disease (PD) is a neurodegenerative 

movement condition characterized by hallmark 

motor manifestations caused by gradual 

depletion of dopaminergic neurons in the 

substantiate nigra pars compacta. It is currently 

projected that PD will impact upwards of 6 

million people globally, with prevalence rates 

predicted to double in the coming years. 

There is currently no treatment for PD, though 

dopaminergic therapies such as levodopa and 

dopamine agonists frequently control motor 

symptoms well. Unfortunately, to maintain the 

same degree of control over motor effects, 

these treatments need higher dosages over time 

[1]. 

Parkinson's disease has been studied 

mathematically by G. Austin in 1961 and 

expressed the amplitude in hand tremor by a 

second-order differential equation, using the 

Van der Pol model [2]. In 2009 Claudia 

expresses another symptom using nonlinear 

two-delay differential equation in [3]. We know 

the effect of the psychological and emotional 

state on the tremor, but it is worth noting that 

after a period of taking Parkinsonism drugs 

present a combination of symptoms, sometimes 

increased tremor. These symptoms appear as a 

result of the fact that only 5–10% of the drug 

crosses blood-brain barrier [4]. E.Ahmed 

suggests a modification to this model in [3] for 

solve the problem of positive feedback to be 

stable [5]. 

In this paper we will study the models in [3-5], 

and assume small delays. In Parkinson's 

disease, the time delay is small, whether we 

express the defect in signal transmission or the 

defect in the repetition of handwriting.  

We will use the Taylor for the two models in 

[3-5] in the case of small delays, and then we 

will solve a set of numerical examples and 

compare them by the step method with the 

solution after approximating the model by 

using Taylor series with the solution using 

Matlab code DDE 23. 

1. Stability for delay differential 

equation model 

 Parkinson's disease has been studied 

mathematically in [3] as in the following delay 

differential equations: 

), -)x(t -x(t a+

) -x(t a+) -x(t a =
dt

dx(t)

213

2211





 

0.<t<-<-    and  0>t   ,h=x(t) 12       (1) 

 Where, 
 a ,a ,a 321   are constant coefficients, 

 x(t)  function for defect in Parkinson's disease 

and h constant history for  x(t) . 

The fixed points for the system in (1) are, 

0* x , 3

21*

a

aa
x




. 
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  If 

 

) -)x(t -x(t a+

) -x(t a+) -x(t a =) -x(t),-x(tf

213

221121





 (2) 

 Then:  

 
xaa

)-x(t

) -x(t),-x(tf

1

21
31 









, (3) 

 
xaa

)-x(t

) -x(t),-x(tf

2

21
32 









. (4) 

 Stability for zero fixed point ( 0 =x*
) 

 By substituting into equations (3) and (4) for

0 =x*
, 

1

1

21 a =
) -x(t

)) -x(t), -x(tf(x,









, 

2

2

21 a =
) -x(t

)) -x(t), -x(tf(x,









. 

Then the linear model corresponding to the 

model in (1) can be written as follow: 

         . 0<t<-<-    and  0>t   ,h=x(t)

), -x(t a) -x(t a=
dt

dx(t)

12

2211



 

 (5) 

 By substituting into equation (5) for 
t-e=tx )(

, then the characteristic equation for the model 

in (5),  

2
2

1
1 e ae a=

 
 . 

 For small delays 1,1  21  . 

 aa 21      

Then the fixed point 0 =x*
 is asymptotically 

stable if, 

0 aa 21  . (6) 

 For large delays 1,1  21  . 

Then the fixed point 0 =x*
 is asymptotically 

stable if, 

0 aa 21   , 
11a

 and
1 a2 

.   (7) 

 If 01a  and  0 a2  ,  the negative term affect 

as a negative feedback to reduce the motor 

defect, and positive term affect as a positive 

feedback to increase the motor defect.  

If the negative feedback 1a
 is greater than the 

positive feedback 2a
, the defect tends to zero 

fixed point, see Fig. (1). 

Under the positive feedback conditions  

( 0 a0,a 21   and
0 a3  ), 0  

So, the zero fixed point is unstable.  

The non-zero fixed point is negative.  

Stability for non-zero fixed point  

( 3

21

a

aa
 =x* 


) 

 By substituting into equations (3) and (4) for  

( 3

21

a

aa
 =x* 


), 

,2

1

21 a- =
) -x(t

)) -x(t), -x(tf(x,









 

.1

2

21 a- =
) -x(t

)) -x(t), -x(tf(x,









 

Then the corresponding linear model for the 

model in (1) can be written as follow: 

        . 0<t<-<-    and  0>t   ,h=x(t)

), -x(t a) -x(t -a=
dt

dx(t)

12

2112



 

 (8) 

By substituting into equations (8) for
t-e=tx )( , 

then the characteristic equation for the model in 

(8), 

2
1

1
2 e ae -a=

 
  

 For small delays  1,1  21   

 aa 12      

 Then the non-zero fixed point is asymptotically 

stable if, 

0 aa 21  , 
0 a3   (9) 

 For large delays  1,1  21    

 Then the non-zero fixed point is asymptotically 

stable if, 

0 aa 21  , 
11a

, 
1 a2 

,  
0 a3  .   (10) 

In the case of negative feedback 01a  and 

positive feedback 0 a2  ,   
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 If the positive feedback is greater than the 

negative feedback, the model will be stable at 

the non-zero fixed point see Fig. (2). 

 For small delays, by using Taylor series the 

system in (1) written as follows: 

       ,
dt

dx(t)
-x(t) a+

dt

dx(t)
-x(t) a+ 

dt

dx(t)
-x(t)a =

dt

dx(t)

21
2

3

2211
































. h=x(0)            (11) 

 

 
  ,x(t)

aaaa

a
+

 x(t)
aaaa

a+a
 =

dt

dx(t)

2

232131

3

232131

21

)(1

)(1




















 

 h=x(0) .            (12) 

 The critical points for the system in (12) are, 

3

21** ,0
a

aa
xx




 

 Then the fixed point 0* x is asymptotically 

stable if,      

 
 

0
)(1

2 




232131

1

aaaa

aa

 .          (13) 

 
Fig. (1): negative feedback greater than the 

positive feedback 
0.2 and 0.1 0.5,h 0.3,a 0.4,a -0.6, a 11321    

 Then the non-zero fixed point is 

asymptotically stable if, 

   
 

0
)(1

2 




232131

1

aaaa

aa


     (14) 

 

Fig. (2): negative feedback smaller than the 

positive feedback 
0.2 and 0.1 0.5,h 0.3,a 0.6,a -0.4, a 11321    

So if we consider,  

  0)(1  232131 aaaa 
. 

Then the zero fixed point is asymptotically 

stable if, 02  aa1 , and the non-zero fixed 

point is asymptotically stable if, 02  aa1  

which coincides condition in  (6-7).  

2. Stability for delay differential 

equation model with positive feedback 

E.Ahmed in [5] discussed the model in (1) 

and have endorsed that it is unbounded and 

unstable for the case of positive coefficients, 

but this is not true for the biodynamic systems. 

Moreover, E.Ahmed in [5] suggests a 

modification for the model in (1) to be bounded 

for this case as follows: 

,2
213

2211

x-) -)x(t -x(t a+

) -x(t a+) -x(t a =
dt

dx(t)





0.<t<-<-  and 0>t   ,h=x(t) 12   (11) 

 Where  
1 a a a 321 

 

For study stability in (16) assumes that: 

 2213

221121

x(t)-) -)x(t -x(t a+

) -x(t a+) -x(t a =)) -x(t), -x(tg(x,





 
(11) 

 The model in (11) has critical points if

0=)) -x(t), -x(tg(x, 21  . 
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 The equilibrium points, 0 =x*
, 

3

21

1 a

aa
 =x*





 . 

 By linearization the model to analysis the 

stability: 

xaa =
) -x(t

)) -x(t), -x(t(x,g
1

1

21
3









, (11) 

xaa =
) -x(t

)) -x(t), -x(t(x,g
2

2

21
3









, (11) 

x2=
) x(t

)) -x(t), -x(t(x,g 21 


 

 . (11) 

Stability for zero fixed point ( 0 =x*
) 

By substituting into equations (11), (11) and 

(11) for 0 =x*
, 

Then the corresponding linear model for the 

model in (11) can be written as the previous 

system in (5), see Fig. (3). 

 

Fig. (3): 2.0,1.0 21   ,

5.0,1.0,4.0,6.0 321  handaaa
 

In this case, the effect of negative feedback 

is greater than the effect of positive feedback. 

So the defect decreases until it reaches the zero 

fixed point. 

Stability for non-zero fixed point  

By substituting into equations (17), (18) and 

(19) for (

p
a

aa
 =x* 





3

21

1
), 

 Then the corresponding linear model for the 

model in (16) can be written as follow: 

0.<t<-<-    and  0>t   ,h=x(t)

2px(t),-) -x(t p)a(a+

) -x(t p)a(a =
dt

dx(t)

12

232

131











  (20) 

 By substituting into equations (20) for
t-e=tx )( , then the characteristic equation for 

the model in (20), 

pe p)aa)e pa(a= 2
32

1
31 2( 

 

For small delays  1,1  21   

0)1(2  pa aa 321     

0
1

)1(2 





3

21
321

a

aa
a aa

 

1,0  321 aaa
 

Then the non-zero fixed point is 

asymptotically stable if, 

0 aa 21   

 In Fig. 4, the condition 0 aa 21   for 

stability is satisfied.   

 

Fig. (4) : 2.0,1.0 21   , 

5.0,2.0,4.0,2.0 321  handaaa
 

 Small delays chosen, the coefficients 

3, aa,a 21  are positive. The defect will increase 

until it reaches the non-zero equilibrium point

75.0* x . 

 For large delays  1,1  21    

 The model in (21) at non-zero fixed point is 

stable if, 

1paa 31 
,

1paa 32 
 and 1p      
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 The condition of stability system  

 

1
a

aa1 




3

2

1
   then    

1aaa1  32  , 

 1pa1  ,    1pa2  ,    22paa 21   

 For small delays, by using Taylor series the 

system in (15) written as follows: 

      ,x(t)-
dt

dx(t)
-x(t) a+

dt

dx(t)
-x(t) a+ 

dt

dx(t)
-x(t)a =

dt

dx(t)

2
21

2
3

2211
































. h=x(0)    (21) 

So, 

 

 
    ,x(t)

aaaa

a
+

 x(t)
aaaa

a+a
 =

dt

dx(t)

2

232131

3

232131

21





























)(1

1

)(1





. h=x(0)    (22) 

The fixed points for the system in (22) are, 

0x , 3

21

1 a

aa
x






. 

If, 

 

 
    ,x(t)

aaaa

a
+

 x(t)
aaaa

a+a
 =f(x(t))

2

232131

3

232131

21





























)(1

1

)(1





 

 

 
  x(t),

aaaa

a
2+

 
aaaa

a+a
 =

dx(t)

df(x(t))

232131

3

232131

21





























)(1

1

)(1





 

 For zero fixed point, 

 0
dx(t)

df(x(t))


  

 Then zero fixed point is unstable. 

 For non-zero fixed point, 

 
 0

aaaa

a+a
 -=

dx(t)

df(x(t))

232131

21 
 )(1 

 

 Then nonzero fixed point is asymptotically 

stable, which coincides with results of 

E.Ahmed in [5].  

 

3. Numerical examples with comparison 

between dde23 ,ode45 and step method 

In this section, we will present numerical 

examples to illustrate the previously inferred 

stability conditions for small delays with a 

comparison between the solutions by using 

matlab codes dde23, ode45 and step method. 

Case 1: Consider the delay differential 

equation, 

          0.<t<.2-    and  0>t   ,0.5=x(t)

.2)-.1)x(t-0.3x(t+

.2)-x(t 0.4+.1)-0.6x(t- =
dt

dx(t)

0

00

00

 

 The corresponding initial value problem, 

   0.5=x(0)x(t)
0.89

 0.4
+x(t)

0.89

0.2-
 =

dt

dx(t) 2
,

.

  

Fig. (5): solving by using matlab code dde23,   

zero fixed point is asymptotically stable 

 

Fig. 6, solving by using matlab code ode45  

By comparing the solutions using the Matlab 

dde23 and ode45 codes, we find that, same 

behavior. 

Case 2: Consider the delay differential 

equation, 
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       0.<t<.2-    and  0>t   ,0.5=x(t)

.2)-.1)x(t-0.1x(t-

.2)-x(t 0.5+.1)-0.4x(t- =
dt

dx(t)

0

00

00

  

 The corresponding initial value problem, 

   0.5=x(0)x(t)
1.07

 0.1
+x(t)

1.07

0.1
 =

dt

dx(t) 2
,

. 

 
Fig. 7, solving by using matlab code dde23, 

non-zero fixed point is asymptotically stable.  

 
Fig. 8, solving by using matlab code ode45  

By comparing the solutions using the Matlab 

dde23 and ode45 codes, we find that, same 

behavior. 

Case 3: Consider the delay differential 

equation, 

          0.<t<-    and  0>t   ,0.5=x(t)

),-)x(t-0.3x(t+)-x(t 0.2+)-0.1x(t =
dt

dx(t)

4

4242

(24) 

In this case we will use the step method to 

solve the delay differential equation, explain 

the stability, and solve it by using the matlab 

code dde23 

First step 
 2,0

 

0.5.(0)x 0.225, =
dt

(t)dx
1

1 
 

Second step 
 4,2

 

).2(1x(2)x 0.1,2)-(t0.25x =
dt

(t)dx
21

2 
   

Third step 
 6,4

 

).6(2x(4)x 3),-(t2)x-(t0.3x3)-(t0.2x2)-(t0.1x =
dt

(t)dx
31111

3 

 

).8(3x(6)x 3),-(t2)x-(t0.3x3)-(t0.2x2)-(t0.1x =
dt

(t)dx
41212

4 

Fourth step 
 8,6

 

By solving the initial value problem to every 

step.  

 

 
Fig. 9: step method for model in (24) where,

4,2,5.0,3.0,2.0,1.0 21321  haaa

  

 
Fig. 10: Matlab code dde23 for model in (24) 

where,

4,2,5.0,3.0,2.0,1.0 21321  haaa
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The corresponding ordinary differential 

equation, 

   0.5=x(0)x(t)
3.1

 0.7-
+x(t)

3.1

0.3
 =

dt

dx(t) 2
,

. 

 
Fig. 11: Matlab code ode45 for 

corresponding model in (24) where,

4,2,5.0,3.0,2.0,1.0 21321  haaa

 By comparing the figures 9, 10 and 11 we find 

a great match between the Matlab code dde23 

and the solution using the steps method. The 

solution is completely different from using the 

Taylor series because the delays are not small 

4. Conclusion 

 The delays with Parkinson's disease in the 

control state and the non-control state are often 

very small and this is the reason for using the 

Taylor series to convert the delay differential 

equation into ordinary differential equation. 

The stability conditions that were deduced in 

[4-1] in the case of small delays matched the 

conditions that were inferred. The solution to 

the delay differential equations matches the 

solution by converting to the normal 

differential equations in the case of small 

delays. Solving differential equations using 

Taylor series Good and simple in case of small 

delays and the directional behavior matches 

when using the Taylor series, the step method is 

effective when the delays are small or large. 
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