A Comparison between Different Topology
Optimization Methods
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Abstract

Topology optimization approach is considered among the most interesting fields of structural
optimization. In this paper topology optimization for compliance minimization using method of moving
asymptotes MMA is presented. This method is considered as a general and flexible optimization method,
where it can handle any kind of objective function and any number of constraints. The effect of changing
the lower and upper asymptotes on the optimization process convergence is studied for seeking the
demanded convergence with more stability and minimum time as possible. Topology optimization of
different models such as a cantilever beam and simply supported beam for two and three dimensional
structure is accomplished. Also a comparison between Method of Moving Asymptotes (MMA) and
different methods such as Sequential Quadratic Programming (SQP), Optimality Criteria (OC), and
Hybrid Cellular Automata (HCA) is accomplished according to the compliance value, time consumed and
the resulted topological shape.

NOMENCLATURE u, : Element displacement vector

p; . Element density

x;: Design variable j - Initial densit
x;: Lower bound of design variable Zo ) Element elas)t/icit
;. Upper bound of design variable i ) y .
P - Penalization factor E, : The base material elasticity modulus
L;: Lower moving asymptote vara?:IV_(:_Iulme Ifractlon
U;: Upper moving asymptote 0- nitial volume
C]' C I Nelx : horizontal elements number
K | E(I)eTnpe:lir;iieffness matrix Nely : vertical elements number
€ .

v: Poisson's ratio



F: Applied Force on model

U: Global displacement

asy;n.. Initial asymptotes value

asyqec. Decreased value of asymptotes
asy.. Increased value of asymptotes

:TC: Average compliance sensitivity for element
i
and its neighbors

1. INTRODUCTION

Topology optimization approach is
considered one of the most interesting
fields of structural optimization. It is
considered as a promising area that
meets a great interest from mechanical
designers and manufacturers. It is a
relatively new but rapidly expanding
research field. It also has important
practical applications in automotive and
aerospace industries.

Topology optimization strives to
achieve the optimal distribution of
material within finite volume design
domain; which maximizes a certain
mechanical performance under specified
constraints. Its algorithms selectively
remove and relocate the elements to
achieve the optimum performance [1].
It can provide a good configuration
concept for the structure as a minimum

compliance or maximum stiffness
design.
The first paper on topology

optimization was published over a
century ago by the versatile Australian
inventor Michelle (1904) who derived
optimality criteria for the least weight
layout of trusses, see [2]. Bendsge and
Kikuchi were presented the landmark
paper that had introduced most popular
numerical FE-based topology
optimization method [3]. Bendsge had
followed that with the method of SIMP
which is considered the most popular
approach in topology optimization [4].
Ole Sigmund (2001) developed a
Matlab code for topology optimization

based on minimizing compliance,
mainly  using  optimality criteria
approach that depends on the sensitivity
of the objective function [5]. Also there
are some methods that can be considered
as numerical methods such as,
sequential linear programming,
sequential quadratic programming, and
method of moving asymptotes [6] that
can be adopted for topology
optimization.

In this paper, the MMA method is
applied to different 2D and 3D models
(with different number of elements and
boundary conditions) as it will be
discussed later in section 5&7. A
comparison between this method and
other methods such as SQP, OC
approach [5], and HCA method [1] is
presented in section 8.

2. METHOD OF MOVING

ASYMPTOTES

The ideal method for structural
optimization should be flexible, general,
and able to handle not only element size
as design variables, but also other
variables such as shape and material
orientation angles. It should be able to
handle all kinds of constraints. MMA
method can handle all of these problems
in addition to general non-linear
programming problems. Moreover it is
easy to implement and use. The method
of moving asymptotes is a new method
for structural optimization that is based
on a special type of convex
approximation [6].

It is a common approach to
mathematical programming method for
non-linear optimization problems to
formulate a local model at an iteration
point. This local model approximates the
original one at the given iteration point
but is easier to solve. Classical methods
like sequential quadratic programming



use such local models. But with respect
to the large number of design variables,
the use of SQP methods and solving the
local models is very costly if not even
impossible, due to the fact that gathering
second order information for the
approximation of the Hessian could be
an insuperable task [7].

Consider a structural optimization
problem of the following form:

P: min fox) €ER™ (1)

S.t: f(x)<F, fori=1,...m (2)

xj<xj<Xx forj=1,.,n (3
Where x = (x4, ... ..., x,)T is the vector
of design variables; fy(x) is the
objective function; f;(x) < £, is the
behavior constraints; x; and x;are
given upper and lower bounds.

The method is interpreted in brief that
each fi(k), is obtained by a linearization
of f; in variables of the type
1/(x; — L;) or 1/(U; —x;) dependent
on the signs of derivatives of f; at x®,
where k is the current iteration. The
values of the parameters L; and U; are
normally  changed  between the
iterations, and we will sometimes refer
to L; and U; as "Moving Asymptotes".
For more details on this method, see [6].

3. TOPOLOGY
OPTIMIZATION USING

MMA

MMA algorithm that was presented
by Krister Svanberg and written with
Matlab is used in this section, see [8].
At the beginning, it is important to
define the general equations of topology
optimization  for  minimizing the
compliance is conjunction with Solid
Isotropic Material with Penalization

approach (SIMP) that was presented by
Bendsge [4]. This approach proposed
that the material properties are assumed
constant within each element in the
design domain. Normally, a continuous
relative density is used as a design
variable. The modulus of elasticity for
each element E; is modeled as a function
of the relative density x; using a power
law:
pi(x:) = pox;

E(x) =Eox{ ,(0<x;<1) (4)
Where, p; is element density; p,is the
initial density; E; is element elasticity;
E,is the elastic modulus of the base
material; and p is a penalization power.
This power penalizes intermediate
densities and drives the design to a black
and white structure. To select the proper
value of p depend on Poisson's ratio v,
see Bendsge and Sigmund Material
interpolation  schemes in topology
optimization [9],

P > max {% , ﬁ} (In2D) (5)
1-v 3 1-v
P> max{15:—, 2-="} (In3D) (6)

Then the general equations can be
written as,

min:c(x) =UTKU =" (x)"u, k.u,
% i=1

st YW _y (7)
VO
KU =F

0<X, X%, 21
where, U and F are the global
displacement and  force vectors,
respectively; K is the global stiffness
matrix, u, and k. are the element
displacement vector and stiffness matrix,
respectively, x is the vector of design
variables which is relative density of
each elements, x,;, IS a vector of
minimum relative densities (non-zero to

avoid singularity) V(x) and V, is the



material volume and the initial volume
respectively; where viac is the prescribed
volume fraction.

If it is desired to optimize a 2D model,
then the model will be descritized to
horizontal elements number nex, and
vertical elements number ney as in the
initial design in Fig. 1. Then the number
of design variables that will be used, n
equals to Nex*ney, also the number of
constraints equations, m equals to 2 as in
equation 7.

Initial|/dedign

>

Fig. 1. Initial design domain of half MBB beam

Using a Matlab 2D finite element
analysis with the properties of model as
shown in Table.1, the optimal topology
design will be obtained as shown in Fig.
2.

Table. 1. Design parameters for topology
optimization of half MBB beam
Properties Values
Young's modulus (E) 1 N/mm?
Poisson's ratio (v) 0.3

Force (F) 1IN

SIMP factor (P) 3

Volume fraction (Virac) 0.5

No. of elements (Neix™*Nety) 30*20
Initial design variables x, 0.5

Fig. 2. The resulted topology optimization of half
MBB 30x20 element using MMA method

It is observed that with increasing the
number of elements, the method will
consume more time and it will be
impractical. Consequently changing the
range of lower and upper moving
asymptotes (L;,U;) closer or far away
from the design variables x;, the
convergence process can be achieved.
More details on how to choose the
moving asymptotes and how to generate
strictly conservative or more linearly
approximations can be found in [6]. This
problem will be treated in next section.

4, EFFECT OF LOWER
AND UPPER MOVING
ASYMPTOTES ON
OPTIMIZATION
CONVERGENCE

Since the method of moving
asymptotes is a general method, so the
asymptotes can be adopted to be suitable
for seeking the demanded convergence
of specific problems. A general
(although heuristic) rule for how to

change the values of L](.k) and Uj(k) is the
following:

a) If the process tends to oscillate, then
it needs to be stabilized. This
stabilization may be accomplished by
moving the asymptotes closer to the
current iteration point.

b) If, instead, the process is monotonic
and slow, it needs to be relaxed. This
may be accomplished by moving the
asymptotes away from the current
iteration point, See [6].

The default rules for updating the lower
asymptotes Lgk) and the upper

asymptotes U].(k) will be now explained.

The first two iterations, when k =1 and k
=2: will be:



k k -
LE ) = xj( ) — asYine (" = x™)

U® =2 + asyp (-2 (8)

In later iterations, when k > 3

L}(k) — xj(k) _ y]_(k) ( xj(k—1) _ L](k—l))
U =5 +y (U =) ()
Where,
asyaecrs if(xj(k) - xj(k_l))(xj(k_l) - x].(k_z)) <0
V,-(k) =3 aSYiners if(xl-(k) - xl-(k_l))(xj(k_l) - xj(k_z)) >0
(1, if () = ) (V- P) =0
(10)
Where the default value of asy,,, equals
0.5, asygq.. €quals 0.7 and asy;,., equals
1.2, see [11]. It is also found that there
are some rules that can be used in the
sub-problem file in the MMA code, see
[8]. That can be added to the previous
asymptotes rules. These rules are:

LJ('I;)zin = j(k) = Spax (" = %"
Uj(lrcn)in = xj(k) + Sin (4" = 2™

L;k) = max(Lgk), L](.krzu.n)

L = min(L{, L% )

vl =min(U™, U5

U].(k) = max(U]-(k), Uj(’fn)m) (1)

Where the default values of s,,,, and
Smin 15 10 and 0.01. These values can be
changed to suit any optimization
problem.

To illustrate the difference between
topology optimization using different
ranges of lower and upper asymptotes.
An example of half MBB beam with
20x10 elements is implemented with
different values of S, and S,;, In
equation (11) such as (100, 0.01) and
(600, 0.06) for example. Fig. 3 shows
the convergence of topology
optimization process at first case which
shows that the convergence is steady

after 440 iteration number, with
compliance C = 96.8030 N.mm.
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Fig. 3. Convergence of 20x10 elements half MBB
beam with S,,,,, and S,,;,, of 100 and 0.01.

Fig. 4 shows the optimization process
at the second case and it indicates that
there is no convergence (it finally
oscillates between two values of
compliance C= 99, C= 100) and does
not introduce the optimum solution.
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Fig. 4 Divergence of 20x10 elements half MBB
beam with S,,,,, and S,,; 0f 600 and 0.06.

5. TOPOLOGY
OPTIMIZATION OF
TWO DIMENSIONAL
(2D) MODELS

5.1. Cantilever Beam

The initial values that are introduced
in Table.1 with a model 30x20 mm and
the boundary conditions as shown in



Fig. 5 are used. The final topological
optimum design is obtained as shown in
Fig. 6 with a minimum compliance of
36.76 N.mm while the compliance at the
beginning equals to 154.87 N.mm and
the volume fraction virac was 0.5 from
the total volume.

ﬁ> Initial design
< f

Fig. 5. Initial design of cantilever beam 30x20
elements

Fig. 6. Topology design of cantilever beam of 30x20
elements

Topology optimization of a cantilever
beam with different mesh size is
summarized in Fig. 7 which shows that
the finer mesh leads to a topological
optimum design with less compliance
and finer shape than courser mesh.
Although it takes longer time, it has a
finer shape with higher resolution and
easy to determine the void and material
areas.

E»E

(d)

Fig. 7. Topology optimization for different mesh
size for cantilever (a) 20x10 elements with
compliance C=88.8544 (b) 40x20 elements
C=69.0953 (c) 60x30 elements C=66.6591. (d) 80x40
elements C=65.0711 (e) 100x50 elements C=65.1185
(f) 120x60 elements C=64.9388

5.2. Half MBB Beam

A topology optimization of MBB
beam with different mesh size with the
same initial design as shown in Fig. 1
and initial design parameters as in
Table.1l is illustrated in Fig. 8. Same
conclusions are reached as in section

EE%

(b)

&&&

(d) ()
Fig. 8. Topology optimization for dn‘ferent mesh
size of half MBB (a) 20x10 elements with
compliance C=96.9919 (b) 40x20 elements
C=84.1450 (c) 60x30 elements C=81.3742 (d) 80x40
elements C=80.0763 (e) 100x50 elements C=79.6268
(f) 120x60 elements C=79.8129.

6. IMPROVEMENT OF
NUMERICAL
INSTABILITIES

Using the mesh independency
filtering developed by (Peterson and
Sigmund 1998) [12], the filter modifies
the design sensitivity of a specific
element based on a weighted average of




the element sensitivities in a fixed
neighborhood.

Where the sensitivity of the objective
function is found as:

a _
a—:i = —p(x)P "]k, 12)
Modifying the element sensitivities
using the mesh-independency filter to
involve the effect of sensitivity of
neighbors [5] is found as:

dc 1

- " A,
—_— = — _ X
ox;  x XN, H,S0=177a"a

ac
0xq

Hy = Tyyin — dist(i,a)

Where H, is the convolution operator
(weight factor); and the operator
dist(i,a) is defined as the distance
between center of element i and center
of element a. The convolution operator
H, is zero outside the filter area. Effect
of using mesh independency filter is
shown in Fig. 9 which is a cantilever
with mesh of 60x30 elements.

(@) (b)

Fig. 9. Difference between topological design (a)
without mesh filtering and C= 64.6405. (b) with
mesh filter and C= 66.6591.

7. TOPOLOGY
OPTIMIZATION OF
THREE DIMENSIONAL
(3D) MODELS

7.1. 3D Cantilever Beam

the method of moving asymptotes
(MMA) is applied on three dimensional
models, and using ANSYS finite
element analysis with "Solid45" linear
and isotropic solid element type. An

interface between the ANSYS program
and the MMA Matlab code is achieved.

@ by
Fig. 10. 3D cantilever beam 20x10x8 elements (a)
initial design (b) final topology optimization design

Using a different mesh size (i.e. solid
model  of  length*width*thickness,
20x10x8) as shown in Fig. (10-a) where
the initial design and boundary
conditions (loads and DOF) is
illustrated, and the final topological
optimization design is shown in Fig.
(10-b). Also Fig. 11 shows topological
optimum design for the same initial
design but with different mesh size of
30x20x10.
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Fig. 11. Final topology optimization of 3D
cantilever beam 30x20x10 elements.

7. 2. 3D Half MBB Beam

The method of moving asymptotes is
also applied on a three dimensional half
MBB beam. Applying MMA algorithm
on this model using a Matlab code
written by Krister Svanberg and the
finite element analysis using ANSYS
program.  With  elements  number
20x10x8 as shown in Fig (12-a), as the
initial design and boundary conditions
(loads and DOF) is illustrated. The final
topological optimization design s
illustrated in Fig. (12-b), where the



compliance at first iteration is C= 63.09
N.mm and at final optimum iteration
became C= 11.57 N.mm. Also Fig. 13
shows the topology optimization of half
MBB beam but with number of elements
of 30x20x10, the compliance of this
example at the first iteration was C=
4291 N.mm and at final iteration
becomes C= 6.81 at the same volume
fraction Virac = 0.5.

b,

Fig. 12. 3D MBB beam 20x10x8 elements (a) initial
design (b) final topology optimization design
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Fig. 13 Final topology optimization of 3D half MBB
beam 30x20x10 elements

8. COMPARISON
BETWEEN MMA, SQP,
OC, AND HCA
METHODS

In this section, a comparison between
MMA method and different methods
such as SQP, OC used in [5] and HCA
with proportional integral derivative
(PID) control rule [1] presented by
Tovar et al. is accomplished. This
comparison is achieved according to the
compliance values, the time consumed

and the resulted topological shape in
each method.

All topology optimization methods
use the same initial design and the same
conditions in order to achieve a fair
comparison (i. e. the same 2D finite
element analysis using Matlab). It is
important to define the type of PC that is
used and its CPU and memory
specifications to make time readings
more realistic. HP computer with
INTEL Core 2 Duo CPU 2.01GHZ and
2 GB of RAM is used here. Table.2
shows the difference between each of
these methods in compliance, time and
resulted shape.

Fig. 14 shows that the compliance
values in each method almost near and
equal except the HCA method which
shows that with increasing the number
of elements, the compliance increase
than other methods. It indicates that this
method will not be a practical method.
Fig. 15 shows a large difference in the
time consumed from one method to
another. At the beginning with a small
number of elements, it is observed that
the time consumed in all methods is
almost equal. But with increasing the
number of elements, the method of SQP
results in a large increase in the
consumed time which makes this
method totally impractical.

MMA method comes the second
method in consumed time after SQP
method, as shown in Fig. 15. The time
that MMA method consumes with
30x30 elements is 20 minutes, while
SQP method consumes 199 minutes.
While at 50x50 elements MMA method
consumes 80 minutes, despites SQP
method that consumes more than 25
hours and does not give the final
optimum solution because it becomes
out of memory of CPU.



Table.2 Difference
in time consumed,

compliance, and
resulted shape
between MMA,

SQP, OC, and HCA
methods

No. of . MMA method SQP method 0OC method HCA method
comparison
elements
Compliance 24.6004 23.9268 24.575 20.4345
Time: 1 min. 36 sec. 21 sec. 2 sec. 2 sec.
10x 10
Figure:
Compliance 96.863 77.87 97.32 67.4349
Time: 1 min. 50 sec. 10 min. 46 sec. 7 sec. 14 sec.
20x 10
Compliance 25.094 25.844 24.816 249139
Time: 1 min. 10 sec. 9 min. 14 sec. 5 sec. 3 sec.
20x 20
Figure:
Compliance 224,909 852.991 225.64 187.8579
30x10 Time: 6 min. 21 sec. 5 hrs. 30 min. 7 sec. 8 sec.
Compliance 47.854 46.2178 47.088 42.6086
Time: l_min. 29 sec. 3 hrs. 30 min. 19 sec. _4 sec.
30x20 .
Figure:
Compliance 25.6280 25.3993 25.6661 29.001
Time: 20 min. 50 sec. 3 hrs. 19 min. 47 sec. 7 sec.
30x30
Figure:
Compliance 38.5279 43.7584 38.3422 39.5394
Time: 15min. 30 sec. 20 hrs. 2 min. 40 sec. 11 sec.
40 x 30
Figure:
compliance 26.1935 268296 not find 26.2098 30.9159
Time: 40 min. 23 sec. QOver 25 hrs. 3 min. 33 sec. 9 sec.
40x40
Figure: Not found
compliance 26.7830 26.6650 31.5705
Time: 1 hrs. 20 min. 1 min. 48 sec. 1 min. 33 sec.
Out of
50x50 memory of
Figure: CPU
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Fig. 14. Difference in compliance between MMA,
SQP, OC, and HCA
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Fig. 15 Difference in time consuming between
MMA, SQP, OC, and HCA

Also, if we wish to compare the
HCA with OC method, it s
observed that HCA is faster than the
last one in  convergence and
reaching the optimum solution and
gives minimum compliance values
for the small number of elements
but with increasing this number we
can notice from Fig. 14 that HCA
gives high compliance values than
other methods.

The HCA and OC  methods
considered as non general
optimization methods and cannot be

10

used for any optimization problem,
while the SQP and MMA methods

are considered as general
optimization methods and handle
any objective function and any

number of constraints.

If we wish to change the objective
function  from  the  compliance
minimization to any other objective
function in this case, MMA method
will be the most suitable and
general optimization method.

9. CONCLUSIONS

a. This paper has investigated the
topology optimization using the
method of moving asymptotes and
other methods and shows the
difference between them.

b. The method of moving asymptotes is
considered as a general and flexible
method for structural topology
optimization problems, it can handle
any type of optimization problems.
This paper shows that the MMA is
the most convenient optimization
method for any type of objective
function and any number of
constraints  equations and also
reaches the optimum solution with a
minimum time.

c. Using the method of moving
asymptotes let the one control the
convergence, stability and speed of
the optimization process.

d. With increasing the number of
elements, the range of asymptotes
should be increased to save much
time. The recommended range of
asymptotes that can be make the
convergence stable as indicated in
eqn. 11 is from 100 to 1200.
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