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ABSTRACT  

This study aims to investigate the impact of particles on flow characteristics within the framework of downward 

turbulent gas-solid flow through a sudden expansion backward-facing step. Employing the Eulerian-

Lagrangian approach, the simulation encompasses both gas and solid phases. A custom FORTRAN code, based 

on the finite volume technique with a hybrid scheme in a staggered grid, is developed to simulate the scenario. 

This research introduces and compares the standard k-ε and Chen-Kim turbulence models with experimental 

outcomes. The investigation utilizes experimental measurements and numerical simulations to comprehend 

flow dynamics. Upon juxtaposing the results with published experimental data, the current code displays 

favorable outcomes, motivating further theoretical exploration and parameter investigation. The sudden 

expansion backward-facing's performance is evaluated across mass loading ratios. Computational findings 

emphasize the considerable influence of mass loading ratio on flow behavior. An increase in mass loading ratio 

leads to heightened solid phase concentration and distinct flow patterns.  

  

Keywords: Multiphase, Standard K-e model, Eulerian-Lagrangian approach.  

 

1. Introduction 

In the realm of fluid dynamics, the study of turbulent 

flows through complex geometries plays a pivotal role 

in understanding various natural and industrial 

processes. Among these, the phenomenon of turbulent 

two-phase flows through sudden expansions within 

backward facing step configurations holds significant 

importance due to its relevance in numerous practical 

applications. These flows are prevalent in 

technological domains encompassing industrial 

setups, energy conversion processes, and geophysical 

scenarios. Sudden expansions, which induce 

significant changes in flow parameters such as 

velocity and pressure, are encountered in a variety of 

engineering scenarios, including combustion 

chambers, exhaust systems, and industrial processes 

involving particulate-laden flows. As a result, 

comprehending and forecasting the turbulent traits of 

flows containing particles holds considerable 

importance as a research focus within the realm of 

applied fluid mechanics. Conventional computational 

methodologies typically rely on the utilization of the 

Reynolds-averaged Navier-Stokes (RANS) equations, 

which involve the characterization of the turbulent 

spectrum through semi-empirical turbulence models. 

In this context, numerical simulation techniques offer 

an avenue for in-depth exploration. The standard 𝑘 −
𝜀 turbulence model, a widely employed approach in 

computational fluid dynamics (CFD), provides a 

framework for predicting the behavior of turbulent 

flows. By coupling this model with a focus on 

multiphase interactions, the current research aims to 

unravel the intricacies of turbulent two-phase flows 

through a sudden expansion within a backward facing 

step configuration. 

 

Lin et al. reviewed Backward-Facing Step (BFS) flow 

mechanisms, extending it to model generalizations, 

system design implications, including heat transfer 

effects, and discussed control designs [1]. Ruck and 

Makiola experimentally studied particle dispersion in 

single-sided backward-facing step flow [2]. Particle 

size increase caused greater deviation between particle 

and continuous phase velocity fields. Lee and 

Mateescu presented experimental and numerical 

results for air flows over 2D backward-facing steps at 

various flow regimes and expansion ratios [3]. Fessler 

and Eaton conducted an experimental investigation of 
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two-phase flow within a sudden expansion and 

backward-facing step configuration. [4] Mean and root 

mean square particle velocity profiles were measured, 

though limited particle presence downstream of the 

step led to data gaps near the wall. 

 

DNS simulation was used by Barri et al. to explore 

channel flow over a backward-facing step, matching 

upstream results with developed channel flow traits 

[5]. Downstream findings aligned well with 

experiments. Similarly, Moin and Kim used DNS for 

turbulent flow over a backward-facing step, revealing 

strong statistical agreement with experimental data 

[6]. Several Large Eddy Simulation (LES) 

investigations offer insights into particle-laden 

turbulent flows over backward-facing steps. YU et al. 

tracks particle trajectories using a particle track model, 

revealing intricate flow field evolution for both phases 

[7]. Another study by Wang et al., employs LES with 

a Lagrangian approach for the particle phase [8]. 

Additionally, Yu and Lee conducts three-dimensional 

numerical investigations of low-speed particle-laden 

flows over backward-facing steps, utilizing LES for 

the gas phase and Lagrangian particle tracking for the 

particle phase, employing a one-way coupling 

approach [9]. Also, Yu et al. compares 2D and 3D LES 

results for low and high Reynolds numbers over a 

backward-facing step, maintaining consistency with 

flow parameters and geometry [10]. These studies 

collectively enhance our comprehension of complex 

turbulent gas-particle interactions within this specific 

geometric configuration. 

 

This comprehensive collection of studies aims to 

deepen our understanding of gas-particle flows in the 

context of a backward-facing step configuration. Tian 

et al. delves into low particle concentration gas-

particle flows, evaluating predictive capabilities of the 

Lagrangian particle-tracking and Eulerian two-fluid 

models [11]. The RNG k-ε and realizable k-ε models 

emerge as effective turbulence models within this 

context. Shang focuses on gas-solid two-phase 

turbulent flow behind a vertical backward-facing step, 

comparing numerical predictions and experimental 

data for solid particle transport velocities [12]. A study 

by Benavides and Wachem, explores turbulent gas-

particle flow within a vertically oriented backward-

facing step, underlining the importance of accurately 

addressing turbulence to predict dispersed phase 

behavior. [13]. Riella et al. implements a Reynolds-

Averaged Two-Fluid model in OpenFOAM, 

successfully predicting mean flow statistics for a 

backward-facing step [14]. Jin et al. employs the 

LES/FDF model for a similar study, revealing the 

enhanced precision of this model in gas-particle two-

phase simulations [15]. Finally, Zhang et al. 

introduces an anisotropic PDF model for simulating 

two-phase flow across a backward-facing step, using 

the standard 𝑘 − 𝜀 model for gas flow and Finite 

Analytic/Monte Carlo Method for the PDF model, 

offering improved predictive potential [16]. 

Collectively, these studies contribute to refining our 

comprehension of complex gas-particle interactions in 

backward-facing step configurations. 

 

2. Configuration of simulation 

Fig. 1 illustrates the schematic layout of the 

experimental test section conducted by Fessler and 

Eaton [4]. The air flow's Reynolds number across the 

backward-facing step is calculated at 18,400, based 

on the maximum inlet velocity of 𝑈𝑜 = 10.5 𝑚/𝑠 and 

step height 𝐻 = 26.7 𝑚𝑚 . The introduced particles 

within the flow are glass spheres with a diameter of 

𝐷𝑝 = 150 𝜇𝑚  and a density of 𝜌𝑝 = 2500 𝑘𝑔/𝑚³. 

The numerical simulation is conducted utilizing 

identical flow parameters and geometric 

configurations as those employed in the experimental 

study. 

 

 

Fig. 1 Schematic diagram of the test section. 

 

3. Mathematical model 

The Eulerian-Lagrangian technique is used to study 

two phase (particle laden) flow. Eulerian equations are 

used to simulate continuous phases, while Lagrangian 

equations' trajectory technique is used to anticipate 

solid particles. 

 

3.1 Continuous phase model (Gas phase) 

For a general, Newtonian incompressible, isothermal, 

turbulent, axisymmetric (no angular changes), steady-

state flow, the motion of gas is given by the continuity 

equation with Reynolds averaged Navier stokes 

equations (RANS) in cartesian coordinates. This is 

how the governing equation is expressed according to 

Fig. 1: 
𝜕

𝜕𝑥
(𝜌𝑢𝜑) +

𝜕

𝜕𝑦
(𝜌𝑣𝜑) =

𝜕

𝜕𝑥
(Γ𝜑

𝜕𝜑

𝜕𝑥
) +

𝜕

𝜕𝑦
(Γ𝜑

𝜕𝜑

𝜕𝑦
) +

𝑆𝜑              (1) 

where 𝜑 is the generalized dependent variable, Γ𝜑 is 

the transport coefficient, 𝑆𝜑 is the source term of the 

continuous phase, and 𝑆𝑝
𝜑

 is the source term due to 

fluid-particles interaction. Each variable's definition 

for the governing equation is provided in Table (1).
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Table 1 Variables included in the governing equations for the gas phase. 

 

Conservation of 𝝋 𝚪𝝋 𝑺𝝋 

Continuity 1 0 0 

x-Momentum 𝑢 𝜇𝑒𝑓𝑓 −
𝜕𝑝

𝜕𝑥
+
𝜕

𝜕𝑥
(𝜇𝑒𝑓𝑓

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇𝑒𝑓𝑓

𝜕𝑣

𝜕𝑥
) 

y-Momentum 𝑣 𝜇𝑒𝑓𝑓 −
𝜕𝑝

𝜕𝑦
+
𝜕

𝜕𝑥
(𝜇𝑒𝑓𝑓

∂𝑢

∂y
) +

𝜕

𝜕𝑦
(𝜇𝑒𝑓𝑓

∂𝑣

∂y
) 

Turbulent kinetic energy 𝑘 
𝜇𝑒𝑓𝑓

𝜎𝑘
 (𝐺𝑘 − 𝐶𝐷𝜌𝜀) 

Dissipation rate of turbulent 

kinetic energy 
𝜀 

𝜇𝑒𝑓𝑓

𝜎𝜀
 

𝜀

𝑘
(𝑐𝜀1𝐺𝑘 − 𝑐𝜀2𝜌𝜀 +

𝑐𝜀3𝐺𝑘
2

𝜌𝜀
) 

where 𝐺𝑘 is the generation term of the turbulent kinetic 

energy, 𝜀 is the turbulent dissipation rate, 𝜇𝑒𝑓𝑓 is the 

effective viscosity, and 𝜌 is the continous phase 

denisty. The generation term is given as follows: 

𝐺𝑘 = 𝜇𝑡 [2 ((
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

) + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

]          (2) 

𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡                                                     (3) 

where 𝜇𝑡 is the turbulent viscosity and can be modeled 

for the k-ε turbulence models as: 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
                                                     (4) 

and Sp
u, Sp

v  are the particle momentum source terms 

in axial and wall normal directions, respectively, while 

Sp
k, Sp

ε are the particle turbulence source terms. 

In the present study, the standard 𝑘 − 𝜀 and Chen kim 

models are used and the turbulence constants of these 

model are summarized in table (2) as given by Hamed 

[17]. 

 

 

Table 2 The turbulence models constants. 

Turbulence model Cε1 Cε2 Cε3 CD Cµ σk σε 

Standard 𝒌 − 𝜺 1.44 1.92 0.0 1.0 0.09 1.0 1.3 

Standard Chen-kim  1.15 1.9 0.25 1.0 0.09 0.75 1.15 

 

 

3.2 Solid Phase Model 

When the spherical solid particles collide with the wall 

and one another, it is assumed that they remain rigid 

bodies (undeformed). The channel with pressure 

gradients is traced using a Lagrangian technique with 

a finite number of parcels and a finite number of 

particles with a diameter 𝐷𝑝 in each parcel. The 

particle tracking method is used in which a system of 

ordinary differential equations is used to predict the 

transitional and angular velocities 𝑢𝑝, 𝑣𝑝  𝑎𝑛𝑑 𝜔𝑝 

respectively along the particle path. This system of 

O.D.E as in El-Behery et al. [18] is solved using 4𝑡ℎ 

order Runge-kutta method. 

𝑚𝑝
𝑑𝑢⃗⃗ 𝑝

𝑑𝑡
= 𝐹 𝐺 + 𝐹 𝐷 + 𝐹 𝑆𝐿 + 𝐹 𝑀𝐿                        (5) 

𝑑𝑍𝑝⃗⃗⃗⃗  ⃗

𝑑𝑡
= 𝑉𝑝⃗⃗  ⃗                                                      (6) 

𝑇⃗ = 𝜋𝜇𝑑𝑝
3(0.5∇ × 𝑉𝑓⃗⃗  ⃗ − 𝜔⃗⃗ 𝑝)                         (7) 

𝑇⃗ = 𝐼𝑝
𝑑𝜔⃗⃗⃗ 𝑝

𝑑𝑡
                                                      (8) 

where 𝐹 𝐺  , 𝐹 𝐷 , 𝐹 𝑆𝐿 , 𝐹 𝑀𝐿 are the gravity, drag, Saffman 

lift, and Magnus lift forces, respectively, 𝑉𝑓⃗⃗  ⃗ and 𝑉𝑝⃗⃗  ⃗ are 

the fluid and particle velocity vectors respectively, 𝑍𝑝⃗⃗⃗⃗  

is the particle position vector, 𝜔⃗⃗ 𝑝 is the particle 

angular velocity vector, 𝑚𝑝 is the mass of the particle, 

while 𝑇⃗  is the torque acting on the particle due to fluid 

rotation. 

Assuming spherical particles, the moment of inertia 

for the spherical bodies 𝐼𝑝is given by: 

𝐼𝑝 = 0.1𝑚𝑝𝑑𝑝
2                                                      (9) 

 

3.2.1. The gravity force 

This force, which originates from the disparity 

between fluid weight and particle weight, is 

represented by the following expression: 
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𝐹𝐺⃗⃗⃗⃗ = 𝑚𝑝𝑔 (
𝜌

𝜌𝑝
− 1)                                      (10) 

 

3.2.2. The drag force 

This is the resistance force brought on by a body 

moving in a flow field, and it may be calculated using 

the equation below: 

𝐹 𝐷 =
3

4

𝜌𝑚𝑝

𝜌𝑝𝑑𝑝
𝐶𝐷(𝑉𝑓⃗⃗  ⃗ − 𝑉⃗ 𝑝)|𝑉𝑓⃗⃗  ⃗ − 𝑉⃗ 𝑝|                       (11) 

Where 𝜌𝑝 is the particle density and CD is the drag 

coefficient and can be expressed as a function of 

particle-Reynolds number as in Hamed [17]: 

𝑅𝑒𝑝 =
𝜌𝑑𝑝|𝑢⃗⃗ −𝑢⃗⃗ 𝑝|

𝜇
                                                    (12) 

𝐶𝐷 =

{
  
 

  
 

24

𝑅𝑒𝑝
𝑅𝑒 ≤ 1

24

𝑅𝑒𝑝
0.646 1 < 𝑅𝑒 ≤ 400

0.5
0.000366𝑅𝑒𝑝

0.4275

0.18

400 < 𝑅𝑒 ≤ 3 × 105

3 × 105 < 𝑅𝑒 ≤ 2 × 106

𝑅𝑒 > 2 × 106 }
  
 

  
 

  (13) 

 

3.2.3. The shear lift force 

Since the relative velocities around the particle are not 

uniform, the shear lift results from the inertia effects 

in the viscous flow and is provided by the following 

equation as in Mei [19]: 

𝐹 𝑆𝐿 = 1.615𝑑𝑝
3 𝜌𝑓𝑅𝑒𝑠

−0.5𝐶𝑆𝐿[(𝑉𝑓⃗⃗  ⃗ − 𝑉⃗ 𝑝) × 𝜔⃗⃗ 𝑓]       (14) 

where 𝐶𝑆𝐿 is the shear lift coefficient representing the 

ratio of extended lift force to Saffman force as given 

in [19]: 

If  𝑅𝑒𝑝 ≤ 40 then,  

𝐶𝑆𝐿 = (1 − 0.3314𝛾
0.5)𝑒−0.1𝑅𝑒𝑝 + 0.3314𝛾0.5     (15) 

While, if 𝑅𝑒𝑝 > 40 then, 

𝐶𝑆𝐿 = 0.0524( 𝛾𝑅𝑒𝑝)
0.5                                    (16) 

𝛾 = 0.5
𝑅𝑒𝑠

𝑅𝑒𝑝
                                                    (17) 

where 𝑅𝑒𝑠 =
𝜌𝑑𝑝

2| 𝜔⃗⃗⃗ 𝑓|

𝜇
  is the particle Reynolds number 

of the shear flow and 𝜔⃗⃗ 𝑓 = 0.5(∇ × 𝑉𝑓⃗⃗  ⃗) is the fluid 

vorticity. 

 

3.2.4. The Magnus lift force 

The Magnus effect, which is a measurable 

phenomenon frequently connected to a rotating item 

moving in a fluid, depends on the rotational speed and 

is expressed as Lun and Liu [20]: 

𝐹 𝑀𝐿 =
1

2
𝜌𝑉⃗ 𝑟

2 𝜋𝑑𝑝
2

4
𝐶𝐿𝑀

𝜔⃗⃗⃗ 𝑟×𝑉⃗⃗ 𝑟

|𝜔⃗⃗⃗ 𝑟||𝑉⃗⃗ 𝑟|
                       (18) 

where 𝐶𝐿𝑀 is known as Magnus lift coefficient and is 

calculated as: 

𝐶𝑀𝐿=
𝑑𝑝|𝜔⃗⃗⃗ 𝑟|

|𝑉⃗⃗ 𝑟|
                                         𝑅𝑒𝑝 ≤ 1         (19) 

𝐶𝑀𝐿=
𝑑𝑝|𝜔⃗⃗⃗ 𝑟|

|𝑉⃗⃗ 𝑟|
 [0.178 + 0.822𝑅𝑒𝑝

−0.522]   𝑅𝑒𝑝 ≤ 10
3     (20) 

where 𝑉𝑟⃗⃗  ⃗ = (𝑉𝑓⃗⃗  ⃗ − 𝑉⃗ 𝑝) is the relative linear velocity 

vector and 𝜔⃗⃗ 𝑟 = 𝜔⃗⃗ 𝑓 − 𝜔⃗⃗ 𝑝 is the relative angular 

velocity vector. 

 

The total instantaneous fluid velocity at a specified 

position for the particle inside a cell is the sum of the 

mean fluid velocity vector 𝑉⃗  and the fluctuating 

velocity vector 𝑉′ at the particle position. The 

fluctuating velocity vector 𝑉⃗ ′ is calculated by 

generating a random value clarifying the fluctuation as 

in El-Askary et al. [21]: 

𝑉′ = 𝜁√
2𝑘

3
                                                    (21) 

where 𝜁 is a random number with zero mean and unity 

variance, and k is the turbulent kinetic energy at the 

particle position in the cell. Then the total 

instantaneous fluid velocity is given by El-Askary et 

al. [21]: 

𝑉⃗ 𝑓 = 𝑉⃗ + 𝑉⃗ ′                                                    (22) 

 

Calculating the instantaneous fluid velocity at the 

particle position is needed during the solid phase 

solution where the fluid velocity, the relative linear 

velocity, and relative angular velocity are required into 

equations (11) to (20). 

 

The time step used in equations (5), (6) and (8) which 

are solved by 4𝑡ℎ order Runge Kutta method is known 

as Lagrangian time step ΔtL. As in El-Askary et al. [21] 

and Shuen et al. [22], this time step should be less than 

or equal the interaction time between the generated 

eddy and the particle. The interaction time is the 

minimum time between two times (time required for 

the particle to pass the eddy 𝜏𝑡𝑟 & eddy life time 𝜏𝑒). 

(𝜏𝑖𝑛𝑡 = 𝑚𝑖𝑛(𝜏𝑒 , 𝜏𝑡𝑟))  

where 𝜏𝑡𝑟 = −𝜏𝑝 𝑙𝑛(1 −
𝑙𝑒

𝜏𝑝|𝑢⃗⃗ −𝑢⃗⃗ 𝑝|
)  is the transverse 

time, 𝜏𝑝 =
𝑑𝑝
2𝜌𝑝

18𝜇
  is the particle time, 𝜏𝑒 =

𝑙𝑒

√2𝑘
3

 is the 

eddy life time, and 𝑙𝑒 =
𝐶𝜇

3
4⁄ 𝑘

3
2⁄

𝜀
 is the dissipation 

length scale. 

 

3.3 Particle Wall Collision 

Because the particles in this study are rigid, and 

spherical, there is no deformation caused by collisions, 

and the particle material properties are the same. The 

two types of impact that can occur between a moving 

object and a stationary wall are adhesive and sliding 

impact. When there is an adhesive impact, the particle 

stops sliding on the wall during the impact time, 

however, when there is a sliding impact, the particle 

keeps sliding. After a collision, the particle's velocities 

alter concerning the wall's static and dynamic friction 
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coefficients, as well as the particle's restitution 

coefficient with the solid surface. 

 
Fig. 2 Particle–wall collision. 

 

The equations that describe the particle motion (linear 

and angular velocities) after the particle-wall collision 

are given by Sommerfeld and Huber [23], Heinl and 

Bohnet [24] and can be written as a general model 

where 𝜑𝑝𝑜, 𝜉𝑝𝑜 , are the parallel and normal 

components of the particle velocity before collision, 

and 𝜔𝑝𝑜 is the particle angular velocity before 

collision while,𝜑𝑝 , 𝜉𝑝  , 𝜔𝑝 are the parallel, normal and 

angular particle velocities after collision as shown in 

Fig. 2. 

 

In the adhesive impact, the following equation must be 

achieved: 

𝜑𝑝𝑜 +
𝐷𝑃𝜔𝑝𝑜

2
≤

7

2
𝜇𝑠(1 + 𝑒)|𝜉𝑝𝑜|                        (23) 

where 𝜇𝑠 is the static friction coefficient, 𝑒 is the 

restitution coefficient. 

In this study as Sommerfeld [25], the values of static 

and restitution coefficients are 𝜇𝑠 = 0.4  , 𝑒 = 0.9 

If Eq. (23) is met, the linear and angular velocity 

components after impact can be written as: 

𝜑𝑝 =
5

7
(𝜑𝑝𝑜 −

𝐷𝑝

5
𝜔𝑝𝑜)                                      (24) 

𝜉𝑝 = −𝑒𝜉𝑝𝑜                                                    (25) 

𝜔𝑝 = −
2𝜑𝑝

𝐷𝑝
                                                    (26) 

 

If Eq. (23) is not satisfied, the impact type is a sliding 

impact and the rebound linear velocities and angular 

velocity of the particle after impact are given by: 

𝜉𝑝 = −𝑒𝑤𝜉𝑝𝑜                                                    (27) 

𝜑𝑝 = 𝜑𝑝𝑜 − 𝜇d(1 + e)𝜀o𝜉𝑝𝑜                        (28) 

𝜔𝑝 = 𝜔𝑝𝑜 +
5𝜇𝑑(1+e)𝜀o𝜉𝑝𝑜

𝐷𝑝
                                      (29) 

where 𝜇𝑑 is the dynamic friction coefficient (𝜇𝑑 =
0.15), and 𝜀o indicates the direction of relative 

velocity between the particle surface and the wall and 

is given by: 

𝜀o = 𝑠𝑖𝑔𝑛(𝜑𝑝𝑜 −
𝐷𝑝

2
𝜔𝑝𝑜)                                     (30) 

 

3.4 Particle-Particle Collision 

It is taken into account how particle-particle collisions 

can affect the linear and rotational velocities of the 

colliding particles. As illustrated in Fig. 3, the model 

is simulated in the current work utilizing a stochastic 

technique with virtual (subscribed by 1) and actual 

(subscribed by 2) moving particles. The actual particle 

is the moving particle in the current iteration with 

updated properties such as linear and rotational 

velocities, whereas the virtual particle has properties 

that are identical to the average value of properties in 

the domain cell in the previous iteration of the 

solution. Because particle-particle collision is a 

random process, it is simulated using a probability 

function, which is provided by Oesterle and Petitjean 

[26]: 

𝑃𝑐 = 1 − 𝑒−𝑁𝑝1∆tL(𝐷𝑝1+𝐷𝑝2)|𝑉⃗⃗ 𝑝2−𝑉⃗⃗ 𝑝1|         (31) 

where 𝑁𝑝1 is the number of particles per unit time in 

the computational cell computed from the previous 

iteration, ∆tL is the Lagrangian time step, 𝐷𝑝1 and 𝐷𝑝2 

are the virtual and actual particles diameters, in this 

study (𝐷𝑝1 = 𝐷𝑝2), 𝑉⃗ 𝑝1 and 𝑉⃗ 𝑝2 are the velocity 

vectors of virtual and actual moving particle. 

 
Fig. 3 Particle–particle collision. 

 

The virtual and actual moving particles collide if the 

probability function described in Eq. (31) is greater 

than a randomly generated value produced from a 

dispersed interval [0,1]. Another random value arises 

(Random collision angle) which determines the 

location where the collision takes place. This angle is 

(𝛿 ∈ [−𝜋/2, 𝜋/2]) as in Fig. 2. 

 

The particle-particle collision can occur in sliding or 

non-sliding collisions, just like the particle-wall 

collision. The following relation must hold for the 

sliding collision to occur as mentioned in Crowe et al. 

[27]: 
𝑛⃗ ∙𝐺 (0)

|𝐺 𝑐𝑡
(0)
|
<

2

7
∙

1

𝑓𝑝(1+𝑒𝑝)
                                      (32) 

where 𝑛⃗  is the unit normal vector, 𝐺 (0) is the relative 

velocity before impact and 𝐺 𝑐𝑡
(0)

 is the tangential 
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relative velocity component before collision at the 

contact point and they can be derived according to Fig. 

2 as: 

𝑛⃗ = (cos 𝛾)𝑖 + (sin 𝛾)𝑗                                       (33) 

𝛾 = 𝜃 + 𝛿                                                    (34) 

𝐺 (0) = (𝑢𝑝1
(0)
− 𝑢𝑝2

(0)
)𝑖 + (𝑣𝑝1

(0)
− 𝑣𝑝2

(0)
)𝑗          (35) 

𝐺 𝑐𝑡
(0)
= 𝐺 (0) − (𝑛⃗ ∙ 𝐺 (0))𝑛⃗ + 0.5Dp1𝜔⃗⃗ p1

(0)
× 𝑛⃗ +

0.5Dp2𝜔⃗⃗ p2
(0)
× 𝑛⃗                                                     (36) 

𝑡 =
𝐺 𝑐𝑡
(0)

|𝐺 𝑐𝑡
(0)
|
                                                    (37) 

where 𝑡  denotes the tangential unit vector, subscribt 

(o) refers to the condition before impact and 𝑓𝑝, 𝑒𝑝 are 

the friction and restitution coefficients (𝑓𝑝 =

0.4  , 𝑒𝑝 = 0.95). 

 

If Eq. (32) is valid, a sliding collision occurs, and the 

particle's post-collision linear and angular velocities 

are given by Sommerfeld [25]: 

𝑉⃗ p2 = 𝑉⃗ p2
(0)
− (𝑛⃗ − 𝑓𝑝𝑡 )(𝑛⃗ ∙ 𝐺 

(0))(1 + 𝑒𝑝)
𝑚𝑝1

𝑚𝑝1+𝑚𝑝2
 (38) 

ω⃗⃗ p2 = 𝜔⃗⃗ 𝑝2
(0)
+ (

5

𝐷𝑝2
) (𝑛⃗ ∙ 𝐺 (0))(𝑛⃗ × 𝑡 )𝑓𝑝(1 +

𝑒𝑝)
𝑚𝑝1

𝑚𝑝1+𝑚𝑝2
                                                    (39) 

 

If the particle stops sliding after collision, the collision 

is a non-sliding collision, and the after collision 

velocities are: 

𝑉⃗ p2 = 𝑉⃗ p2
(0)
− {(𝑛⃗ ∙ 𝐺 (0))(1 + 𝑒𝑝)𝑛⃗ +

(
2

7
) |𝐺 𝑐𝑡

(0)
|𝑡 }

𝑚𝑝1

𝑚𝑝1+𝑚𝑝2
                                      (40) 

ω⃗⃗ p2 = 𝜔⃗⃗ 𝑝2
(0)
− (

10

7𝐷𝑝2
) |𝐺 𝑐𝑡

(0)
|(𝑛⃗ × 𝑡 )

𝑚𝑝1

𝑚𝑝1+𝑚𝑝2
     (41) 

where 𝑚𝑝1 and 𝑚𝑝2 are the masses of the virtual and 

actual particles, respectively. 

 

3.5 Coupling between the two phases 

The source terms 𝑆𝑝
𝑢, 𝑆𝑝

𝑣 , 𝑆𝑝
𝑘, 𝑎𝑛𝑑 𝑆𝑝

𝜀 stated in the gas 

phase equations serve as the links between the two 

phases and are taken into account in the current study 

when coupling momentum between gas and solid is 

involved. The inclusion of solid particles in the 

computational cell also results in a decrease in gas 

volume. The term 𝑆𝑝
𝑉 that links two phases is given by 

Lun and Liu [20]: 

𝑆𝑝
𝑉 =

𝛽𝜌𝑝

𝑚𝑝𝑁𝑝
∑ 𝐹 
𝑁𝑡
𝑖=1                                      (42) 

where 𝑁𝑝 is the number of particles per unit time in the 

computational cell, 𝑁𝑡 is the total number of 

trajectories , 𝑚𝑝 is the mass of the solid particle, 𝜌𝑝 is 

the particle denisty, 𝐹  is the sum of all forces acting on 

the particle and 𝛽 is the volume void fraction that the 

particle occupies (The sum of 
𝑁𝑝∆𝑡𝐿𝑉𝑝

𝑉𝑐
 over all 

trajectories that pass through the computational cell) 

and can be calculated using the trajectory method as in 

El-Askary et al [21], and Crowe et al. [27]: 

𝛽 = ∑
𝑁𝑝∆𝑡𝐿𝑉𝑝

𝑉𝑐
𝑡𝑟𝑎𝑗                                     (43) 

where ∆𝑡𝐿 is the lagrangian time step, 𝑉𝑝 is the volume 

of one particle and 𝑉𝑐 is the volume of the 

computational cell. 

 

Since the volume of the entire cell is unity, the gas void 

fraction is equal to the difference between the volume 

of the cell and the volume that its particles occupy, and 

it may be computed as follows: 

𝛼𝑔 = 1 − 𝛽                                                    (44) 

 

The turbulent kinetic energy and dissipation rate 

source terms can be expressed as Eghlimi et al. [28]: 

𝑆𝑝
𝑘̅̅ ̅ = 2𝑘

𝛽𝜌𝑝

𝜏𝑝
(1 − 𝑒

−𝛽𝑘
𝜏𝑝

𝜏𝑙  )                        (45) 

𝑆𝑝
𝑘̅̅ ̅ = 2𝜀

𝛽𝜌𝑝

𝜏𝑝
(1 − 𝑒

−𝛽𝜀
𝜏𝑝

𝜏𝑙  )                        (46) 

where 𝜏𝑙 =
𝑘

𝜀
  and 𝛽𝑘, 𝛽𝜀 are constants and equal 

0.09, 0.4 respectively. 

 

4. Boundary conditions 

For the inlet condition, the particle velocity is assumed 

to be constant, depending on the particle mass flow 

rate, while the turbulent kinetic energy and its 

dissipation rate are assumed to be constant. The gas 

flow velocity is assumed to follow a 1/7 𝑡ℎ  power-

law profile. The wall-function approximation is 

employed to assume no-slip boundary conditions for 

solid walls referring to El-Askary and Balabel [29]. At 

the centerline, the symmetric boundary conditions are 

applied to all variables. The axial gas velocity is 

corrected at the exit to satisfy the mass balance. 

 

5. Solution Strategy 

To solve the governing equations for pressure-velocity 

coupling in a steady flow utilizing a staggered grid and 

the SIMPLE algorithm, a finite volume discretization 

with a hybrid differencing scheme technique is 

presented. The Tri-diagonal Matrix Algorithm is used 

to solve the discretized equations. The 4𝑡ℎ-order 

Runge-Kutta technique with the Lagrangian time step 

is used to solve the ordinary differential equations that 

describe particle motion, and the solution process is 

broken down into the following steps as in [30]: 

 

1- Firstly, the domain is discretized and has an initial 

value for all variables. 

 

2- Solution of gas phase is obtained until 

convergence, (maximum normalized residuals 
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0.0005), considering no source terms and no solid 

void fraction with unity gas void fraction. 

3- Parcels are traced at the pipe inlet with the entry 

conditions mentioned above. 

 

4- The solution of the solid phase is obtained with a 

small time step considering all effects on the solid 

phase such as dispersion, all forces, and particle-

wall collisions. 

 

5- The particle-particle collisions are not considered 

in the first iteration only where there is no old data 

for the solid phase such as velocities and number 

of parcels. 

 

6- Tracking all the trajectories that pass each 

computational cell, solid and gas void fractions, 

momentum, and turbulence source terms are 

computed and stored. 

 

7- The particle properties are stored as virtual data 

for the next iteration where used in the particle-

particle collisions and the solution continues until 

the last parcel. 

 

8- The solution of the gas phase is resolved taking 

into consideration the gas void fractions and 

source terms computed in step 6. 

 

9- Repeat steps from 2 to 8 till overall convergence 

in all variables. 

 

6. Results and discussion 

 

6.1 Velocity profiles of the gas phase 

 
𝑎) 𝑥 𝐻⁄ = 2 

 
𝑏) 𝑥 𝐻⁄ = 5 

 
𝑐) 𝑥 𝐻⁄ = 7 

 
𝑑) 𝑥 𝐻⁄ = 9 

 
𝑒) 𝑥 𝐻⁄ = 14 

Fig. 4 Streamwise mean velocity (gas phase). 
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Fig. 4 illustrates the predicted streamwise mean 

velocity profiles of the gas phases at varying 

downstream positions (𝑥/𝐻 =  2, 5, 7, 9, 𝑎𝑛𝑑 14), 

alongside corresponding experimental data [4]. The 

simulation showcases substantial agreement with the 

experimental results [4]. As noted in [4], particle 

presence was notably absent in the separation zone 

behind the step at positions (𝑥/𝐻 =  2 𝑎𝑛𝑑 5). 
Minimal discrepancies are observed between the SKE 

and Ck turbulence models across positions (𝑥/𝐻 =
 2, 5, 7, 𝑎𝑛𝑑 9). Generally, the Chen-kim model 

demonstrates improved flow prediction near the duct's 

centerline region, while the SKE model performs 

better near the straight wall region.  

The streamlines of the gas phase in the presence of the 

150 𝜇𝑚 diameter glass particles is shown in Fig. 5. A 

recirculation zone behind the step wall is formed due 

to the strong adverse pressure gradient. The predicted 

reattachment length of (𝑥 =  0.198, 𝑥/𝐻 =  7.416) 
agrees well with the experimental results of [4]. In the 

LES simulation study [7], there was a secondary 

circulation zone at (  𝑥/𝐻 =  2.38) and it was not 

predicted in the experimental work [4] and also using 

Reynolds averaged equations in Ref. [31]. 

 

 
Fig. 5 Mean streamwise flow pattern (gas phase). 

 

 

6.2 Axial velocity profiles of the solid phase 
 

 

𝑎) 𝑥 𝐻⁄ = 2 

 

𝑏) 𝑥 𝐻⁄ = 5 

 
𝑐) 𝑥 𝐻⁄ = 7 
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𝑑) 𝑥 𝐻⁄ = 9 

 
𝑒) 𝑥 𝐻⁄ = 14 

Fig. 6 Streamwise mean velocity profiles for the 

150 𝜇𝑚 glass particles. 

 

Validation of the glass particles’ mean axial velocities 

is shown in Fig. 6. The inlet velocity of the particle is 

3 % of the gas inlet velocity. The model predicts well 

the flow near the straight wall of the duct and poorly 

expects the velocities near the recirculation zone at 

(𝑥/𝐻 =  2 𝑎𝑛𝑑 5). The SKE and Ck models predicts 

the results similarly and well with the experimental 

data of [4]. 

 

6.3 Pressure recovery coefficient along the sudden 

expansion wall 

In fluid dynamics, particularly when studying flow 

through abrupt changes in geometry like a backward-

facing step, the pressure of the fluid can change 

significantly due to alterations in velocity, turbulence, 

and other flow characteristics. According to the air 

density 𝜌 and inflow velocity 𝑈𝑖𝑛, the pressure 

coefficient 𝐶𝑝 has been dimensionalized as follows: 

𝐶𝑝 =
(𝑃𝑥−𝑃𝑥=0)  

0.5 𝜌 𝑈𝑏
2                                                    (47) 

 

 
Fig. 7 Pressure recovery Coefficient along the sudden 

expansion wall. 

 

Fig. 7 shows the pressure recovery coefficient along 

the sudden expansion wall in the single and two phase. 

Due to the cross sectional area increases due to the 

expansion, the pressure drop increases as the gas 

velocity decreases according to Bernoulli’s equation. 

When particles are introduced into the flow, they can 

significantly alter the flow behavior, leading to 

changes in pressure distribution. The interactions 

between particles and the fluid can affect the 

momentum exchange, turbulence, and energy 

dissipation within the flow field leading to an increase 

in the pressure recovery. 

 

6.4 Skin friction coefficient along the sudden 

expansion wall 

In fluid dynamics, the skin friction coefficient (𝐶𝑓) is 

a dimensionless parameter used to characterize the 

frictional drag force exerted by the fluid on a surface. 

It is a crucial parameter in assessing the flow 

resistance and energy losses within a fluid system. The 

measured skin friction coefficient is calculated as: 

𝐶𝑓 =
𝜏𝑤𝑎𝑙𝑙  

0.5 𝜌 𝑈𝑖𝑛
2                                                     (48) 

where 𝜏𝑤𝑎𝑙𝑙    is the wall shear stress. 

 

Fig 8. Reveals the skin friction coefficient along the 

sudden expansion wall in the single phase and in the 

presence of the solid particles. When particles are 

introduced into a flow, they can disrupt the smooth 

flow of the fluid near the surface, leading to increased 

frictional resistance and potentially higher skin 

friction coefficients. 

 

 
Fig. 8 Skin friction Coefficient along the sudden 

expansion wall. 

 

6.5 Effect of mass loading ratio 

The effect of the mass loading ratio on the pressure 

coefficient shown in Fig. 9, refers to how changes in 

the concentration of solid particles relative to the fluid 

phase impact the pressure distribution along the flow 

path. When the mass loading ratio increases (from 0.5 

to 1.5), meaning more solid particles are introduced 

into the fluid, several effects on the pressure 

coefficient can occur. It leads to increased momentum 

exchange between the fluid and particles and so 
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increased pressure recovery coefficient. Also, solid 

particles can interact with the fluid, affecting the 

overall flow structure. These interactions may lead to 

variations in the pressure coefficients. 

 

 
Fig. 9 Pressure recovery coefficient along the sudden 

expansion wall for different mass loading ratios. 

 

It is shown from Fig. 10 the effect of mass loading 

ratio on the skin friction coefficient along the sudden 

expansion. Generally, an increase in the mass loading 

ratio often leads to an increase in the skin friction 

coefficient and it is shown after the separation zone. 

This is because the presence of solid particles in the 

fluid disrupts the smooth flow near the surface, 

creating additional frictional resistance. As more 

particles are introduced into the flow, the interactions 

between the particles and the fluid increase, which can 

result in higher shear stresses and a higher skin friction 

coefficient along the surface of the step geometry. 

 

 

Fig. 10 Skin friction coefficient along the sudden 

expansion wall for different mass loading ratios. 

 

7. Conclusion 

In summary, this research focuses on investigating 

how particles influence flow characteristics in 

downward turbulent gas-solid flow through a sudden 

expansion backward-facing step. Utilizing the 

Eulerian-Lagrangian approach and a custom 

FORTRAN code, the study examines both gas and 

solid phases, comparing standard 𝑘 − 𝜀 and Chen-Kim 

turbulence models with experimental data. The 

devloped code aligns well with experimental results 

through gas and particle velocity profiles, inspiring 

further exploration. Findings emphasize the impact of 

mass loading ratio and particle diameter on flow 

behavior, revealing heightened solid concentration 

with increased mass loading and significant effects of 

particle diameter on pressure distribution, skin friction 

coefficient along the wall. This work contributes 

valuable insights into particle-fluid interactions in 

complex flow scenarios and offers a foundation for 

future investigations. 
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