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Abstract: A new closed-form solution is analytically obtained for the joint probability 

distribution that exactly    arrivals and    departures occur over a time interval of 

length t  in the M/M/1 queueing system, that is in the present      customers at the 

beginning of the interval. Hence, both the marginal distributions of the arrivals and the 

departures are determined. Finally, some numerical computations and representations 

of the obtained results are carried out.  
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1.Introduction

Many researchers have been developed 

different techniques to obtain the transient 

distribution for the queue length of the 

M/M/1/ . Most of them dealing with the  

classical M/M/1 queue in one-dimensional state 

model, which represent the number of the 

customers at a given time [2-3, 6, 8, 10-12]. 

Also, the system treated as birth-death process 

in which increasing arrival by one as birth and 

departure decreasing by one as death. It is not 

provide any information about the number of 

arrival and departure customer. Indeed, the 

solution of these models is very complicated 

and includes the modified Bessel functions and 

infinite series of these fuctions even for the 

steady state case. In many potential 

applications of queueing theory, the steady 

state never ocurrs and the transient state is 

always required for the system for example 

barber shops or physician's offices not work 

under steady state model. Pegden and 

Rosenshine [6] have succeeded to design 

M/M/1 queue in two-dimensional state  

introduce a solution of the arrival and departure 

process for the first time. However, the initial 

state was not taken into account.  Boxma [1] 

has developed a new technique to overcome the 

previously mentioned solution. He extends their 

study to the case in which the process started 

with initial customers in the system (    . He 

has used a creative method to avoid the use of 

generating functions in his solution. 

Probabilistic interpretation and path counting 

has used. However, the used method is 

complicated. Sharma [7] and in Sharma and 

Shobha [9] have interested to  find closed form 

solution of the model without reference to 

Bessel functions. Also, he has started the 

system with an arbitrary  number of units at 

time t=0 and has not interested in the initial 

number of customer as in Boxma [1]. In this 

study, our motivation is to solve analytically 

the obtained differential-difference equations, 

which describe the arrival and departure 

processes  in an M/M/1 queueing system. 

Moreover, we obtain the marginal distribution 

of the arrival process and we show that the 

arrival process independent on the departure 

process and the intial state. Kumer [4] has 

proved that the arrival process is depending 

only on the queue length. This paper is 

orgainzed as follows: In Section 2, we describe 

the model and formulate its differential-

difference equations. In section 3, we 

analytically obtain the joint probability 

distribution of the arrival and departure 

process. In Section 4, the marginal distributions 

of arrivals and departures are carried out . In 

Section 5, some numerical results and graphs 

are given to show the efficiency of the obtained 

formula. 

1. Model formlation 
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Consider an M/M/1 queueing system with 

FCFS discipline with arrival rate   and service 

rate  . Suppose the random process 

  (    (        , where  (   represents the 

number of arrivals,  (   number of departures 

and let  (   be the initial number of customers 

in the system at time t=0. We consider the joint 

probability of the arrival and departure process 

is denoted by 

      (       (      (        (                                    
t                    
The Laplace transform of                (    is defined as:  

     (   ∫     
 

 

      (       

Using the following transition diagram, 

 
it is easy to verify that             (    satisfies the 

following differential-difference equations: 
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by summing the previous equations, we have 
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After some simplifications Eq. (16) yields, we get 
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let      , we get 

      (   
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),          

/(17)  

But at            has been given in Eq.(15).  

Then, from Eq.(15) and Eq.(17), we have second 

part in Eq.(11). Eq.(17) is achieved for           . 

Then we have Eq.(11). 

Now, we are going to prove the correctness of 

       (    
This solution can be shown by the following 

steps of induction (Pegden and Rosenshine [6]): 

i.  Theorem 1 is right for             (    with          

          

ii.             (    is right. If theorem 1 is assumed right 

for                  (   , then it is right for              (   ,       . 

iii. If theoream 1 is assumed right for         (   and  

        (  , then it is right for       (   with 

                 

iv. If theoream 1 is assumed right for                      (   , 

then it is right for                 (    with        . 
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 Each domain of these steps in the state space 

 {            } is presented in the 

following   figure: 

 

For (i), starting with             (   
 

     
 ,  

we get from Eq.(12)             (   
 

     
   ,                                                               

          

and also, we have  
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                          (   
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Then, we prove                          
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By induction on     as follows, using Eq. (6). 
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For (ii),  we prove 
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For (iii), if Eq. (11) assumed correct for 
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This is established in ( Appendix B).  

For (iv), using            (   , we get  
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Thus we have completed the proof of 

Theorem. 

2. The joint probability distribution of  

the arrival and departure processWe invert 

      (    in Theorem 1.  to obtain  the joint 

probability distribution        (  . 

i. for                                          
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applying the binomial theorem to simplify 
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Hence,we have the probability distribution 

of  the arrival and departure process 
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 (  
   

  
)
  (      

(     
           (     

The final expression is simpler than that in 

Boxma[1]. 

This leads to obtain the following main 

results: 

Theorem 2. 

Let       (    
            (      (        (     ,      
                                               

Then  
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where       (     denotes the Erlang-   

distribution with expectation   :  
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4.The marginal distributions of arrivals and 

departures 

4.1 Arrival process 

The marginal distribution for the arrival 

process   (    (      is given by  
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                                      (21) 

Which is the Poisson distribution with mean 

  . This is independent of the initial state   and 

the parameter   of the service process. Kumer 

[4] proves that The arrival rate is increases than 

queue length is also increases. 

4.2 Departure process  

We consider the marginal distribution for the 

departure process   (    (       

Case(i)                 (     ,          

we have      (      (      

∑      (   ∑  
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Clearly,  at      Eq. (24) gives Eq. (23). 

Also, we can confirm the normalization 

condition 
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Clearly, the  probabilities sum is one. 
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      as 

obtained in  Eq.(21). 

5. Numerical Illustration 

The analytical results obtained in the above 

sections are numerically presented in this 

section. For the new formula Eq.(20) of the 

given queueing model, the transient-state 

probabilities are plotted for diferent values of 

  and    and the  results are shown in Figs  (1) 

and (2). Also, the special case      (   for 

different values of          are ploted in Fig. 

(3). From the given figures , 

we can see the probability values increase 

initialy and then decrease before reaching the 

steady state for large values of t.  

 
Fig 1: Time-dependent probabilities 

      (                            Vs Time  

for       and        

 
Figs 2: Time-dependent probabilities       (      
     Vs Time 

for     and      

  
 

Figs 3: Time-dependent probabilities  

     (    Vs Time. 

In the right figure     and      and in the 

left        and        
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Table 1 Results on the Sum of        (   

∑      (  

   

   

 

 

       
      (    

  
 

 

           
 

         
 

      

 

          

 

       

 

        

0.000454 0.000454 5 1 1 1 2 2 

0.014873 0.014873 3 1 1 1 2 2 

0.002684 0.002684 4 1 1 1 2 2 

0.146525 0.146525 2 0 2 1 2 2 

0.367879 0.367879 1 1 1 1 1 1 

0.084224 0.084224 5 0 2 1 1 1 

0.000014 0.000014 4 0 2 1 4 4 

0.033689 0.033689 5 1 1 0.5 2 1 

0.149361 0.149361 3 1 1 0.5 2 1 

0.270671 0.270671 2 1 1 0.5 2 1 

0.073263 0.073263 4 1 1 0.5 2 1 

0.224042 0.224042 3 0 2 0.5 2 1 

0.146525 0.146525 4 0 2 0.5 2 1 

0.044618 0.044618 3 0 2 2 1 2 

0.010735 0.010735 4 0 2 2 1 2 

0.000002 0.000002 4 1 1 2 2 4 

0.000074 0.000074 3 1 1 2 2 4 

 

The formula given in Eq. (20) depends only on 

the correctness of the inversion of       (  . A 

numerical check of (20) based on the relation  

   (    (      
      (    

  
 ∑      (  

   

   

 

Appendix A. 
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Appendix B. 

In this part, we have to simplify the sum of the 

following two terms: 
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