LINE X TESTER ANALYSIS FOR YIELD COMPONENTS AND FIBER PROPERTIES IN SOME COTTON CROSSES OF (Gossypium barbadense L.) Y.I.M. AL-Hibbiny, M. A.H. and Badeaa A. Mahmoud Cotton Research Institute, Agricultural Research Center, Giza, Egypt Received: Oct. 20, 2019 Accepted: Oct. 27, 2019 ABSTRACT: The present study was carried out at Sakha Agricultural Research Station, Cotton Research Institute, Agricultural Research Center, Egypt, during 2017 and 2018 seasons. This investigation was carried out to estimate heterosis, combining ability, proportional contributions, genetic components and heritability estimates of some characters for six Egyptian cotton varieties as lines i.e. Giza 90, Giza 95, Giza 86, Giza 94, Giza 92 and Giza 96, while, the other five genotypes used as testers were Karshenky, Suvin, Australy 13, Pima S_7 and Pima S_6 , using line x tester analysis. In 2018 season a randomized complete blocks design with three replications was carried to evaluate all genotype (eleven parents and their 30 F₁s crosses) for some genetic parameters. The results indicated that mean squares due to the genotypes, parents, crosses and parents vs. crosses were significant and highly significant for all traits studied, except No. of bolls/plant in the parents, lint percentage in the crosses and fiber strength in the crosses and parents vs. crosses. The mean squares due to lines were significant for all studied traits. Mean square for testers and Line x Tester were significant for most traits studied. The following crosses demonstrated the best heterosis relative to mid- and better-parent, i.e, Giza 95 x Karshenky, Giza 95 x Australy 13 and Giza 95 x Pima S_7 for most traits studied, while the following crosses demonstrated the best heterosis relative to mid- and better-parent for most studied yield traits, i.e. Giza 90 x Australy 13 and Giza 86 x Karshenky. The crosses Giza 92 x Karshenky, Giza 92 x Australy 13, Giza 92 x Pima S₇, Giza 96 x Suvin and Giza 96 x Pima S₇ were the best heterosis relative to mid-parent for most studied fiber traits. The results revealed that the line Giza 95 was significant and positive desirable GCA effects for all yield traits. Giza 92 had significant and positive desirable GCA effects for seed index and fiber strength and negative desirable for micronaire reading Giza 96 had significant and positive desirable GCA effects for fiber strength and negative desirable for micronaire reading. In this respect, the results of testers showed that Australy13 had significant and positive desirable for No. of bolls/plant, seed cotton yield/plant and lint cotton yield/plant. However, estimates of specific combining ability (SCA) effects for the crosses Giza 90 x Karshenky, Giza 95 x Pima S₇, Giza 92 x Karshenky and Giza 96 x Suvin were significant desirable SCA effects for some yield traits. Proportion contribution of testers contribution was higher than lines contribution for all traits studied except No. of bolls/plant. However proportion contribution of lines x testers interaction was higher than of lines and testers for most traits studied. The non-additive of genetic parameters were larger than additive genetic variance with respect to all studied traits. Broad sense heritability (h²_b%) estimates were larger than the corresponding values of narrow sense heritability (h_n^2 %) for all traits studied. The highest broad sense heritability estimates was observed in case of lint percentage with values of 71.70% and the lowest was for uniformity index with value of 27.55%, while for narrow sense heritability, it ranged from zero to 4.37% for boll weight and lint index, respectively. Generally, Giza 95 and Australy13 could be used in breeding programs for improving high yielding varieties, while Giza 92 and Giza 96 could be considered as excellent parents for breeding programs to produce new varieties characterized with best fiber properties. Key words: Cotton, Combining ability, Heterosis, Heritability, Gene action. #### INTRODUCTION Large number of cultivars developed from closely related parents, indicating the presence of sufficient variability or mechanisms to create variability and achieve breeding progress in a narrow germplasm base. Unless improved methods suggested to transfer useful genes from diverse to adapted germplasm, cotton germplasm resources will remain limited and variability will be exhausted. Breeders relay on genetic variation between parents to create unique genetic combination necessary for new developing superior cultivars. So, the understanding of the genetic architecture of each breeding material is matter of a great interest for selecting the most desirable cotton germplasm in order to establish the most efficient breeding program for quick maximum genetic improvement. The concept of combining ability is important in designing and choose the plan of plant breeding programmes. It is especially useful in testing procedures, where it is desired to study and compare the performance of lines in hybrid combinations. Two types of combining ability, general and specific, have been recognized in quantitative genetics. Specific combining ability (SCA) is defined as the deviation the performance of hybrids from the expected productivity based upon the average performance of lines involved in the hybrid combination, whereas general combining ability (GCA) is defined as average performance of a line in a series of crosses. Recent cotton improvement programmes primarily emphasize on development of hybrids which have contributed a lot in escalating the productivity of cotton. Kempthorne (1957) reported that, using broad base genotypes as a tester; the general combining of lines is tested as in the top cross method. He added that the line x tester analysis is an extension of this method in which several testers are used. In order to evaluate the materials used in this study, means and variance of genotypes for the studied traits were calculated. Statistical procedures used in this study were done according to Cochran and Cox (1957). Al-Hibbiny (2011)found that proportional contribution of line x tester interaction was higher than that of lines and testers for all studied characters, except lint percentage. Lines contribution higher than testers contribution for most studied traits. Wajid et al., (2011) cleared that the general combining ability (GCA) and specific combining ability (SCA) mean squares for bolls per plant, seed cotton yield and lint percentage were significant. The GCA variances were higher than SCA variances indicating greater importance of additive against non-additive genes, especially dominant ones in advocating these traits. Linga swamy et al., (2013) noticed that the magnitude of GCA and SCA variances revealed that pre-dominance of additive as well as non-additive gene action was important for inheritance of seed cotton yield and its yield attributes. Amein et al., (2013) found that the parent Giza 86 showed maximum and significant GCA effects for fiber strength, and it was also the 2nd best combiner for seed cotton yield and lint yield. The parent 10229 was the 2nd best combiner for fiber strength, boll weight and lint percentage. The parent (Giza 89 x Giza 86) was the best combiner for boll weight, while the parent (Giza 89 x Sea) was the best combiner for upper half mean. EL-Seoudy et al., (2014) found that significant heterotic values over the mid- and the better-parent varied between positive and negative for most of the studied traits. The estimates of variance due to SCA were positive and higher in magnitude than the variance of GCA for all studied traits indicating that the non-additive genetic effect played a major role in the genetic expression of these traits. While, additive effects had a minor role in the inheritance of these traits indicating that the hybridization program would be effective in improving components traits. its vield and Comparing the GCA effects of individual parent revealed that G83xG75x5844 was the best combiner for all studied traits. Dominance estimates were higher than the additive estimates for all studied traits indicating more importance for dominant gene effect in the inheritance of these traits. Estimates of heritability in both broad and narrow senses for yield its components showed high heritability values in broad sense for all traits under investigation. The main objective of this study was to evaluate heterosis, combining ability, gene action and heritability for yield, yield components and fiber properties in some crosses of Gossypium barbadense L. #### MATERIALS AND METHODS In 2017 growing season the single crosses between eleven parental genotypes were made by using the six Egyptian cotton varieties, Giza 90, Giza 95, Giza 86, Giza 94, Giza 92 and Giza 96 as lines (Females). While, the five remaining varieties were used as testers (males) namely Karshenky (Russian variety), Suvin (Indian variety), Australy 13(Australian variety), Pima S₇ and Pima S₆ (American Egyptian varieties) to produce 30 F₁'s and the parental varieties were also selfed to increase their seeds. Thirty crosses and eleven parents were evaluated in 2018 growing season at Sakha Agricultural Research Station in an experiment randomized complete block design with three replications to evaluate genotypes. Each block therefore, contained 24 plots. Each plot was two rows 4 m long and 0.60 m wide. Hills were spaced 0.40 m apart which thinned to keep constant stand of one plant/hill. The traits studied were. - Number of bolls per plant (NB/P) - Lint cotton yield per plant (LCY/P.g) - Boll weight (BW.g) - Lint index (Ll.g) - Micronaire reading (MIC). - Uniformity index (UI). - Seed cotton yield per plant (SCY/P.g) - Lint percentage (L%) - Seed index (SI g) - Upper half mean (UHM). - Fiber strength (FS). All fiber properties were measured in the laboratories of the Cotton Technology Research Division, Cotton Research Institute, Giza. #### Statistical
analysis: The first step in the line x tester analysis is to perform analysis of variance and test the significance of differences among the genotypes including crosses and parents. If these differences are found significant, line x tester analysis was performed (Singh and Chaudhary 1979). The significance of means was determined using the least significant difference value (L.S.D) at 0.05 and 0.01 levels of significance, according to the equation, which outlined by Steel and Torrie (1985). Heritability was estimated in both broad (h²h%) and narrow (h²_n%) senses from two formulas given by Allard (1960) and Mather (1949). # RESULTS AND DISCUSSION Analysis of variance Results of the analysis of variance and the mean squares of all traits studied for the eleven parents and their 30 F₁'s crosses are presented in Table (1). The results showed that the mean squares due to the genotypes, parents, crosses and parents vs. crosses were significant and highly significant for all studied traits, except No. of bolls/plant in the parents, lint percentage and lint index in the crosses and fiber strength in the crosses and parents vs. crosses. The mean squares due to lines were significant for all studied traits. Mean square for testers and Line x Tester were significant for most studied traits. Samreen et al (2008) found that the GCA variances due to lines and testers and SCA due to lines x testers interaction were significant for all studied characters. However, the magnitude of GCA variance for lines (females) and testers (pollinators) were higher than the SCA variance indicating preponderance of additive genes in the expression of all traits. Baloch et al (2014) found that mean squares due to general combining ability (GCA) of lines and testers and specific combining ability (SCA) of lines x tester interactions were significant. significance of GCA and SCA variances suggested that both additive and dominant genes were controlling the studied characters. Table 1. Mean squares of line x tester analysis for yield, yield components and fiber properties. | sov | df | NB/P | SCY/P | LCY/P | L.% | BW | SI. | |------------------|----|----------|------------|-----------|--------|---------|---------| | Replications | 2 | 31.71 | 679.79 | 86.44 | 1.13 | 0.038 | 0.035 | | Genotypes | 40 | 88.09** | 1300.37** | 195.63** | 3.77** | 0.151** | 1.084** | | Parents | 10 | 54.85 | 1220.79** | 182.26** | 3.48** | 0.269** | 1.405** | | Crosses | 29 | 680.83** | 10203.15** | 1418.52** | 2.66 | 0.368** | 1.442* | | P. <i>vs</i> . C | 1 | 79.12** | 1020.83** | 158.07** | 3.91** | 0.103** | 0.961** | | Lines | 5 | 96.24* | 1883.52** | 368.14** | 7.68** | 0.123* | 1.892** | | Tester | 4 | 149.84** | 1536.81** | 230.75** | 0.53 | 0.026 | 2.007** | | Line x Tester | 20 | 60.69* | 701.96* | 91.02* | 3.64* | 0.113** | 0.519 | | Error | 80 | 29.83 | 337.35 | 49.96 | 1.26 | 0.050 | 0.314 | ^{*, **} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. Table 1. Cont. | df | LI | UHM | FS | MIC | UI | |----|--|---|---|--|---| | 2 | 0.134 | 1.21 | 0.0251 | 0.057 | 0.19 | | 40 | 0.624** | 3.94** | 0.2343** | 0.164** | 1.97** | | 10 | 0.945** | 4.84** | 0.2745** | 0.115** | 2.82** | | 29 | 0.057 | 36.87** | 0.0002 | 0.231* | 8.17** | | 1 | 0.533** | 2.50** | 0.2285 | 0.178** | 1.47* | | 5 | 1.473** | 4.55** | 0.6180** | 0.560** | 3.38** | | 4 | 0.808** | 4.19** | 0.1979* | 0.055 | 1.32 | | 20 | 0.243* | 1.65 | 0.1372 | 0.107** | 1.02 | | 80 | 0.140 | 1.01 | 0.0672 | 0.045 | 0.81 | | | 2
40
10
29
1
5
4
20 | 2 0.134
40 0.624**
10 0.945**
29 0.057
1 0.533**
5 1.473**
4 0.808**
20 0.243* | 2 0.134 1.21 40 0.624** 3.94** 10 0.945** 4.84** 29 0.057 36.87** 1 0.533** 2.50** 5 1.473** 4.55** 4 0.808** 4.19** 20 0.243* 1.65 | 2 0.134 1.21 0.0251 40 0.624** 3.94** 0.2343** 10 0.945** 4.84** 0.2745** 29 0.057 36.87** 0.0002 1 0.533** 2.50** 0.2285 5 1.473** 4.55** 0.6180** 4 0.808** 4.19** 0.1979* 20 0.243* 1.65 0.1372 | 2 0.134 1.21 0.0251 0.057 40 0.624** 3.94** 0.2343** 0.164** 10 0.945** 4.84** 0.2745** 0.115** 29 0.057 36.87** 0.0002 0.231* 1 0.533** 2.50** 0.2285 0.178** 5 1.473** 4.55** 0.6180** 0.560** 4 0.808** 4.19** 0.1979* 0.055 20 0.243* 1.65 0.1372 0.107** | ^{*, **} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. # The mean performance of genotypes Mean performances for parents (lines and testers) and crosses are presented in Table (2). The lines Giza 94 had the highest values for lint percentage, seed index, lint index and best micronaire reading, Giza 96 had the best means for No. of bolls/plant, seed cotton yield/plant, lint cotton yield/plant, boll weight, upper half mean and uniformity index, while for testers. Suvin had the highest values for all studied traits except lint percentage and micronaire reading, Australy 13 recorded the highest values for lint percentage and micronaire reading. The results also showed that the best mean performances were found for Giza 95 x karshenky for boll weight, Giza 95 x Australy 13 for No. of bolls/plant, Giza 95 x pima s₇ for seed cotton yield/plant, lint cotton yield/plant, seed index and lint index Giza 86 x Karchenky for lint percentage, Giza 92 x Karchenky for uniformity index, Giza 92 x pima s7 for micronaire reading, Giza 92 x pima s₆ for Uper half mean and micronaire reading and Giza 96 x Australy 13 for fiber strength. #### **Heterosis:** The diversity of genetic distance and different of originated was the important source for variability which lead to create new recombinations differently about the parent consequently finding heterosis. Heterosis expressed as the percentage deviation of F_1 mean performance relative to both mid and better-parents. Heterosis refers to the superiority of the F_1 hybrid in one or more characters over its parents, and lead to superiority in adaptation. In general, positive heterosis is considered as desirable for all traits studied, except micronaire reading. The magnitude of heterosis for all traits studied over the mid-parents (MP) and better parent (BP) was presented in Tables (3) and (4). For No. of bolls/plant 25 out of 30 crosses studied showed significant and highly significant positive heterosis relative to mid-parent which ranged from 8.82% for Giza 96 x Australy 13 to 82.15% for Giza 95 x Australy 13. sixteen crosses showed desirable heterosis relative to better-parent which ranged from 12.00% for Giza 92 x Suvin to 76.73% for Giza 95 x Australy13. For seed cotton yield/plant relative heterosis versus mid-parent, fifteen crosses out of 30 F₁ crosses possessed significant and highly significant positive heterosis which ranged from 27.89% for Giza 92 x Australy13 to 97.34% for Giza 95 x pima Sz. while eleven crosses showed significant and positive heterosis relative to better-parent which ranged from 38.64% for Giza 86 x karshenky to 87.98% for Giza 95 x Australy13. For lint cotton yield/plant the results of heterosis versus mid-parent revealed that 21 crosses out of 30 F₁ crosses was found to be significant and positive heterosis which ranged from 13.04% for Giza 92 x pima S₇ to 97.34 for Giza 95 x pima S7, while fifteen crosses showed significant positive heterosis relative to better-parent which ranged from 14.85% for Giza 95 x Suvin to 87.58% for Giza 95 x pima S_7 . In this respect, for lint percentage, the results showed that six crosses out of 30 F₁ crosses relative heterosis versus mid-parent significant and positive which ranged from 1.66% for Giza 86 x Suvin to 6.09% for Giza 86 x Karshenky, Whereas, heterosis versus better-parent showed that Giza 86 x Karshenky was exhibited significant positive heterosis with value of 4.33%. Table 2. The mean performances of six parental lines, five testers and 30 F_1 hybrids for yield, yield components and fiber properties. | yield, yiel | | 1 | | | 1 0/ | D141 | | |-------------------------------|----------|---------------|----------------|-------|-------|------|-------| | Genotypes | . | NB/P | SCY/P | LCY/P | L. % | BW | SI. | | Lines : | | 40.00 | 00.47 | 00.07 | 00.10 | 0.04 | 40.0- | | Giza 90 | | 18.28 | 60.47 | 23.67 | 39.16 | 3.31 | 10.67 | | Giza 95 | | 22.00 | 68.47 | 26.73 | 39.19 | 3.09 | 10.23 | | Giza 86 | | 20.78 | 72.03 | 27.92 | 38.85 | 3.47 | 10.67 | | Giza 94 | | 27.42 | 85.78 | 33.76 | 39.36 | 3.16 | 11.87 | | Giza 92 | | 28.07 | 99.13 | 36.17 | 36.48 | 3.54 | 10.80 | | Giza 96 | | 30.95 | 122.27 | 47.63 | 39.02 | 3.96 | 10.83 | | Testers : | | | | | | | | | Karshenky | | 19.67 | 61.37 | 23.01 | 37.56 | 3.13 | 10.30 | | Suvin | | 28.89 | 98.73 | 39.50 | 40.04 | 3.45 | 11.00 | | Australy 13 | | 23.39 | 73.20 | 29.33 | 40.12 | 3.12 | 10.67 | | Pima S ₇ | | 23.85 | 82.00 | 31.30 | 38.08 | 3.43 | 10.43 | | Pima S ₆ | |
19.97 | 56.40 | 22.28 | 39.30 | 2.84 | 9.00 | | | 0.05 | 8.74 | 29.39 | 11.31 | 1.79 | 0.36 | 0.90 | | LSD | 0.01 | 11.42 | 38.39 | 14.77 | 2.34 | 0.47 | 1.17 | | F₁ hybrids | | | | * | | | | | Giza 90 x Karshe | | 31.54 | 110.93 | 41.53 | 37.52 | 3.53 | 10.77 | | Giza 90 x Raisine | y | 27.33 | 85.96 | 33.89 | 39.40 | 3.17 | 10.43 | | Giza 90 x Austra | lv 13 | 27.53 | 96.07 | 37.67 | 39.37 | 3.50 | 11.00 | | Giza 90 x Pima S | - | 25.21 | 84.50 | 32.67 | 38.68 | 3.36 | 11.47 | | Giza 90 x Pima S | • | 24.38 | 87.53 | 34.54 | 39.42 | 3.59 | 10.83 | | Giza 95 x Karshe | | | 101.30 | 39.13 | | 3.79 | | | | нку | 26.75 | | | 38.72 | | 10.83 | | Giza 95 x Suvin | l 42 | 31.27 | 116.13 | 45.37 | 39.01 | 3.73 | 11.40 | | Giza 95 x Austra | | 41.33 | 137.60 | 54.97 | 39.96 | 3.33 | 11.17 | | Giza 95 x Pima S | | 41.24 | 148.47 | 58.71 | 39.59 | 3.59 | 11.83 | | Giza 95 x Pima S | | 27.70 | 96.90 | 37.10 | 38.34 | 3.49 | 11.53 | | Giza 86 x Karshe | nky | 28.10 | 99.87 | 40.50 | 40.53 | 3.57 | 10.13 | | Giza 86 x Suvin | | 29.68 | 100.60 | 40.32 | 40.09 | 3.39 | 10.07 | | Giza 86 x Austra | | 31.20 | 111.67 | 44.40 | 39.75 | 3.58 | 10.57 | | Giza 86 x Pima S | • | 32.37 | 114.10 | 42.33 | 37.28 | 3.53 | 11.53 | | Giza 86 x Pima S | <u> </u> | 31.94 | 107.87 | 41.63 | 38.69 | 3.37 | 10.13 | | Giza 94 x Karshe | nky | 27.45 | 88.10 | 34.61 | 39.21 | 3.21 | 10.03 | | Giza 94 x Suvin | | 33.15 | 106.47 | 41.47 | 38.65 | 3.19 | 10.30 | | Giza 94 x Austra | ly 13 | 28.73 | 104.67 | 39.83 | 37.92 | 3.63 | 11.33 | | Giza 94 x Pima S | | 28.72 | 100.93 | 39.33 | 38.89 | 3.52 | 11.27 | | Giza 94 x Pima S | 6 | 26.74 | 97.27 | 36.00 | 36.99 | 3.63 | 10.40 | | Giza 92 x Karshe | • | 19.14 | 71.27 | 25.70 | 36.27 | 3.73 | 11.43 | | Giza 92 x Suvin | | 32.35 | 104.93 | 39.17 | 37.30 | 3.25 | 10.93 | | Giza 92 x Australy 13 | | 32.63 | 110.20 | 41.60 | 37.72 | 3.39 | 10.80 | | Giza 92 x Pima S ₇ | | 31.81 | 103.70 | 38.13 | 36.89 | 3.26 | 11.20 | | Giza 92 x Pima S ₆ | | 19.92 | 67.20 | 26.27 | 39.06 | 3.36 | 11.20 | | Giza 96 x Karshenky | | 23.19 | 69.30 | 27.00 | 39.01 | 2.99 | 9.33 | | Giza 96 x Suvin | | 36.86 | 128.97 | 46.19 | 35.88 | 3.53 | 11.07 | | Giza 96 x Australy 13 | | 29.57 | 97.80 | 36.85 | 37.72 | 3.32 | 10.47 | | Giza 96 x Pima S | | 22.45 | 76.10 | 29.13 | 38.42 | 3.39 | 10.73 | | Giza 96 x Pima S | | 27.04
7.57 | 89.87
25.46 | 34.71 | 38.71 | 3.35 | 10.77 | | LSD | 0.05 | 7.57 | 25.46 | 9.80 | 1.55 | 0.31 | 0.78 | | | 0.01 | 9.89 | 33.25 | 12.80 | 2.03 | 0.41 | 1.01 | Table 2. Cont. | Table 2. Cont. | | | | | | T | |-------------------------------|--|------|-------|-------|------|-------| | Genotypes | | LI | UHM | FS | MIC | UI | | Lines : | | T | | r | | 1 | | Giza 90 | | 6.87 | 32.53 | 10.53 | 4.37 | 86.10 | | Giza 95 | | 6.61 | 30.87 | 9.73 | 4.70 | 83.40 | | Giza 86 | | 6.78 | 33.73 | 10.27 | 4.20 | 85.07 | | Giza 94 | | 7.70 | 34.33 | 10.50 | 4.00 | 85.97 | | Giza 92 | | 6.20 | 34.37 | 10.67 | 4.17 | 85.17 | | Giza 96 | | 6.93 | 35.07 | 10.53 | 4.40 | 86.30 | | Testers : | | | | | | | | Karshenky | | 6.21 | 32.70 | 9.87 | 4.60 | 84.20 | | Suvin | | 7.34 | 33.50 | 10.30 | 4.40 | 86.40 | | Australy 13 | | 7.15 | 33.00 | 10.07 | 4.33 | 84.67 | | Pima S ₇ | | 6.42 | 31.33 | 10.00 | 4.47 | 84.33 | | Pima S ₆ | | 5.76 | 33.17 | 10.17 | 4.40 | 85.43 | | Len | 0.05 | 0.60 | 1.61 | 0.41 | 0.34 | 1.44 | | LSD | 0.01 | 0.78 | 2.11 | 0.54 | 0.44 | 1.88 | | F ₁ hybrids | | • | - | - | - | • | | Giza 90 x Karshenky | , | 6.47 | 34.20 | 10.03 | 4.27 | 86.43 | | Giza 90 x Suvin | | 6.78 | 33.03 | 9.60 | 4.97 | 85.57 | | Giza 90 x Australy 1 | 3 | 7.15 | 33.40 | 9.93 | 4.57 | 84.07 | | Giza 90 x Pima S ₇ | | 7.23 | 34.90 | 10.23 | 4.57 | 86.13 | | Giza 90 x Pima S ₆ | | 7.04 | 33.87 | 10.43 | 4.87 | 86.17 | | Giza 95 x Karshenky | , | 6.84 | 33.73 | 10.03 | 4.67 | 85.97 | | Giza 95 x Suvin | | 7.28 | 35.57 | 10.53 | 4.57 | 86.43 | | Giza 95 x Australy 1 | 3 | 7.43 | 35.00 | 10.40 | 4.50 | 86.03 | | Giza 95 x Pima S ₇ | <u>-</u> | 7.76 | 34.50 | 10.17 | 4.43 | 85.47 | | Giza 95 x Pima S ₆ | | 7.17 | 34.60 | 10.10 | 4.37 | 85.73 | | Giza 86 x Karshenky | , | 6.91 | 32.30 | 9.87 | 4.87 | 84.23 | | Giza 86 x Suvin | | 6.74 | 31.73 | 9.57 | 4.80 | 84.43 | | Giza 86 x Australy 1 | ว | 6.97 | 35.13 | 9.97 | 4.90 | 84.70 | | Giza 86 x Pima S ₇ | <u>, </u> | 6.85 | 33.93 | 10.20 | 4.47 | 85.10 | | Giza 86 x Pima S ₆ | | 6.39 | 34.57 | 10.20 | 4.50 | 85.83 | | Giza 94 x Karshenky | 7 | 6.22 | 33.53 | 10.13 | 4.47 | 85.20 | | Giza 94 x Suvin | <u> </u> | 6.49 | 34.13 | 10.07 | 4.47 | 85.73 | | | າ | 6.93 | | 10.37 | 4.57 | 86.03 | | Giza 94 x Australy 1 | ა | | 34.57 | | | ł | | Giza 94 x Pima S ₇ | | 7.17 | 35.17 | 10.57 | 4.43 | 86.33 | | Giza 94 x Pima S ₆ | _ | 6.10 | 35.03 | 10.57 | 4.13 | 86.17 | | Giza 92 x Karshenky | <i>f</i> | 6.51 | 34.67 | 10.30 | 4.30 | 86.93 | | Giza 92 x Suvin | | 6.50 | 34.60 | 10.37 | 4.30 | 85.63 | | Giza 92 x Australy 13 | | 6.54 | 34.73 | 10.47 | 4.17 | 85.73 | | Giza 92 x Pima S ₇ | | 6.55 | 34.80 | 10.60 | 4.10 | 86.03 | | Giza 92 x Pima S ₆ | | 7.18 | 35.60 | 10.37 | 4.10 | 86.17 | | Giza 96 x Karshenky | | 5.97 | 33.73 | 10.33 | 4.23 | 85.43 | | Giza 96 x Suvin | | 6.20 | 35.30 | 10.50 | 4.33 | 86.17 | | Giza 96 x Australy 1 | 3 | 6.34 | 34.90 | 10.67 | 4.20 | 85.93 | | Giza 96 x Pima S ₇ | | 6.69 | 34.93 | 10.20 | 4.40 | 86.53 | | Giza 96 x Pima S ₆ | | 6.81 | 35.27 | 10.40 | 4.60 | 86.67 | | LSD | 0.05 | 0.52 | 1.40 | 0.36 | 0.29 | 1.25 | | 200 | 0.01 | 0.68 | 1.82 | 0.47 | 0.38 | 1.63 | Table 3. Heterosis relative to the mid-parent (MP) for yield, yield components and fiber properties. | ріоро | | | | | | | | |---------------------|------------------|------------------|---------------|----------------|-------------|----------|----------| | Cross | es | NB/P | SCY/P | LCY/P | L.% | BW | SI. | | Giza 90 x Kars | henky | 66.23** | 82.11** | 77.96** | -2.17** | 9.52** | 2.70** | | Giza 90 x Suvi | n | 15.87** | 7.99 | 7.32 | -0.48 | -6.11** | -3.69** | | Giza 90 x Aust | raly 13 | 32.13** | 43.74** | 42.14** | -0.68 | 8.92** | 3.13** | | Giza 90 x Pima | ı S ₇ | 19.69** | 18.62 | 18.86** | 0.15 | -0.30 | 8.69** | | Giza 90 x Pima | S ₆ | 27.46** | 49.80** | 50.37** | 0.48 | 16.70** | 10.17** | | Giza 95 x Kars | henky | 28.37** | 56.05** | 57.34** | 0.91 | 21.76** | 5.52** | | Giza 95 x Suvi | n | 22.89** | 38.92** | 36.99** | -1.53 | 14.17** | 7.38** | | Giza 95 x Aust | raly 13 | 82.15** | 94.26** | 96.08** | 0.76 | 7.41** | 6.86** | | Giza 95 x Pima | S ₇ | 79.93** | 97.34** | 97.34** | 2.47** | 10.22** | 14.52** | | Giza 95 x Pima | S ₆ | 32.03** | 55.21** | 51.40** | -2.32** | 17.66** | 19.93** | | Giza 86 x Kars | henky | 38.89** | 49.73** | 59.04** | 6.09** | 7.97** | -3.34** | | Giza 86 x Suvi | n | 19.50** | 17.82 | 19.60** | 1.66* | -2.21** | -7.08** | | Giza 86 x Aust | raly 13 | 41.27** | 53.78** | 55.10** | 0.67 | 8.59** | -0.94* | | Giza 86 x Pima | S ₇ | 45.06** | 48.15** | 42.97** | -3.08** | 2.32** | 9.32** | | Giza 86 x Pima | S ₆ | 56.74** | 67.97** | 65.88** | -0.98 | 6.86** | 3.05** | | Giza 94 x Kars | henky | 16.57** | 19.75 | 21.93** | 1.97** | 2.12** | -9.47** | | Giza 94 x Suvi | n | 17.74** | 15.40 | 13.20** | -2.64** | -3.63** | -9.91** | | Giza 94 x Aust | raly 13 | 13.10** | 31.68* | 26.26** | -4.58** | 15.50** | 0.59 | | Giza 94 x Pima | S ₇ | 12.03** | 20.32 | 20.91** | 0.43 | 6.77** | 1.05** | | Giza 94 x Pima | ı S ₆ | 12.85** | 36.83** | 28.49** | -5.94** | 21.11** | -0.32 | | Giza 92 x Kars | henky | -19.82** | -11.19 | -13.14** | -2.02* | 11.69** | 8.37** | | Giza 92 x Suvi | n | 13.61** | 6.06 | 3.52 | -2.51** | -7.15** | 0.31 | | Giza 92 x Aust | raly 13 | 26.83** | 27.89* | 27.02** | -1.52 | 1.90** | 0.62 | | Giza 92 x Pima | S ₇ | 22.53** | 14.50 | 13.04** | -1.05 | -6.50** | 5.49** | | Giza 92 x Pima | S ₆ | -17.07** | -13.59 | -10.11* | 3.08** | 5.33** | 13.13** | | Giza 96 x Kars | henky | -8.40* | -24.52 | -23.56** | 1.88* | -15.60** | -11.67** | | Giza 96 x Suvi | n | 23.18** | 16.71 | 6.02 | -9.23** | -4.68** | 1.37** | | Giza 96 x Aust | raly 13 | 8.82* | 0.07 | -4.25 | -4.67** | -6.21** | -2.64** | | Giza 96 x Pima | S ₇ | -18.05** | -25.49* | -26.18** | -0.34 | -8.39** | 0.94* | | Giza 96 x Pima | S ₆ | 6.19 | 0.60 | -0.69 | -1.15 | -1.57** | 8.57** | | LSD | 0.05 | 7.57 | 25.46 | 9.80 | 1.55 | 0.31 | 0.78 | | | 0.01 | 9.89 | 33.25 | 12.80 | 2.03 | 0.41 | 1.01 | | *,** Significant ar | na nianty siai | niticant at () (| มร and 0 01 n | ronanility lev | reis resner | TIVEIV | | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. Table 3. Cont. | Genotypes | | LI | UHM | FS | MIC | UI | |-------------------------------|------|----------|---------|---------------|---------|--------| | Giza 90 x Karshenky | ′ | -1.02** | 4.85** | -1.63** | -4.83** | 1.51* | | Giza 90 x Suvin | | -4.49** | 0.05 | -7.84** | 13.31** | -0.79 | | Giza 90 x Australy 13 | | 1.99** | 1.93** | -3.56** | 4.98** | -1.54* | | Giza 90 x Pima S ₇ | | 8.87** | 9.29** | -0.32** | 3.40** | 1.08 | | Giza 90 x Pima S ₆ | | 11.51** | 3.09** | 0.81** | 11.03** | 0.47 | | Giza 95 x Karshenky | , | 6.77** | 6.14** | 2.38** | 0.36* | 2.59** | | Giza 95 x Suvin | | 4.41** | 10.51** | 5.16** | 0.37* | 1.81** | | Giza 95 x Australy 1 | 3 | 8.01** | 9.60** | 5.05** | -0.37* | 2.38** | | Giza 95 x Pima S ₇ | | 19.02** | 10.93** | 3.04** | -3.27** | 1.91** | | Giza 95 x Pima S ₆ | | 15.94** | 8.07** | 1.51** | -4.03** | 1.56* | | Giza 86 x Karshenky | , | 6.39** | -2.76** | -1.99** | 10.61** | -0.47 | | Giza 86 x Suvin | | -4.59** | -5.60** | -6.97** | 11.63** | -1.52* | | Giza 86 x Australy 1 | 3 | 0.02 | 5.29** | -1.97** | 14.84** | -0.20 | | Giza 86 x Pima S ₇ | | 3.85** | 4.30** | 0.66** | 3.08** | 0.47 | | Giza 86 x Pima S ₆ | | 1.88** | 3.34** | -0.82** | 4.65** | 0.68 | | Giza 94 x Karshenky | 1 | -10.57** | 0.05 | -1.15** | 3.88** | 0.14 | | Giza 94 x Suvin | | -13.77** | 0.64 | -0.32 |
2.38** | -0.52 | | Giza 94 x Australy 1 | 3 | -6.72** | 2.67** | 0.16 | 9.60** | 0.84 | | Giza 94 x Pima S ₇ | | 1.48** | 7.11** | 3.09** | 4.72** | 1.39* | | Giza 94 x Pima S ₆ | | -9.41** | 3.80** | 2.26** | -1.59** | 0.54 | | Giza 92 x Karshenky | , | 4.95** | 3.38** | 0.32 | -1.90** | 2.66** | | Giza 92 x Suvin | | -3.99** | 1.96** | -1.11** | 0.39** | -0.17 | | Giza 92 x Australy 1 | 3 | -1.99** | 3.12** | 0.96** | -1.96** | 0.96 | | Giza 92 x Pima S ₇ | | 3.76** | 5.94** | 2.58** | -5.02** | 1.51* | | Giza 92 x Pima S ₆ | | 20.01** | 5.43** | -0.48** | -4.28** | 1.02 | | Giza 96 x Karshenky | , | -9.08** | -0.44 | 1.31** | -5.93** | 0.22 | | Giza 96 x Suvin | | -13.18** | 2.97** | 0.80** | -1.52** | -0.21 | | Giza 96 x Australy 13 | | -9.91** | 2.55** | 3.56** | -3.82** | 0.53 | | Giza 96 x Pima S ₇ | | 0.13 | 5.22** | -0.65** | -0.75** | 1.43* | | Giza 96 x Pima S ₆ | | 7.28** | 3.37** | 3.37** 0.48** | | 0.93 | | Len | 0.05 | 0.52 | 1.40 | 0.36 | 0.29 | 1.25 | | LSD | 0.01 | 0.68 | 1.82 | 0.47 | 0.38 | 1.63 | | L | | L | L | 1 | | L | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. ## Line x tester analysis for yield components and fiber properties Table 4. Heterosis relative to the better-parents (BP) for yield, yield components and fiber properties. | proper | | I | | | | | | |----------------|-----------------------|----------|----------|----------|----------|----------|----------| | Cross | es | NB/P | SCY/P | LCY/P | L.% | BW | SI. | | Giza 90 x Kars | henky | 60.34** | 80.77** | 75.49** | -4.17** | 6.65** | 0.94* | | Giza 90 x Suvi | n | -5.40 | -12.94 | -14.19* | -1.58 | -8.11** | -5.15** | | Giza 90 x Aust | raly 13 | 17.70** | 31.24* | 28.41** | -1.88 | 5.85** | 3.13** | | Giza 90 x Pima | S ₇ | 5.71 | 3.05 | 4.37 | -1.22 | -2.14** | 7.50** | | Giza 90 x Pima | ı S ₆ | 22.06** | 44.76** | 45.95** | 0.30 | 8.47** | 1.56** | | Giza 95 x Kars | henky | 21.59** | 47.96** | 46.38** | -1.20 | 20.85** | 5.18** | | Giza 95 x Suvi | n | 8.23 | 17.62 | 14.85** | -2.57** | 8.11** | 3.64** | | Giza 95 x Aust | raly 13 | 76.73** | 87.98** | 87.39** | -0.41 | 6.84** | 4.69** | | Giza 95 x Pima | S ₇ | 72.94** | 81.06** | 87.58** | 1.01 | 4.66** | 13.42** | | Giza 95 x Pima | S ₆ | 25.95** | 41.53** | 38.78** | -2.45** | 22.77** | 12.70** | | Giza 86 x Kars | henky | 35.19** | 38.64** | 45.05** | 4.33** | 2.69** | -5.00** | | Giza 86 x Suvi | n | 2.74 | 1.89 | 2.08 | 0.15 | -2.50** | -8.48** | | Giza 86 x Aust | raly 13 | 33.40** | 52.55** | 51.36** | -0.94 | 3.07** | -0.94* | | Giza 86 x Pima | S ₇ | 35.74** | 39.15** | 35.25** | -4.03** | 1.73** | 8.12** | | Giza 86 x Pima | S ₆ | 53.67** | 49.75** | 49.11** | -1.55 | -2.88** | -5.00** | | Giza 94 x Kars | henky | 0.11 | 2.71 | 2.52 | -0.36 | 1.69** | -15.45** | | Giza 94 x Suvi | n | 14.74** | 7.83 | 4.98 | -3.47** | -7.72** | -13.20** | | Giza 94 x Aust | raly 13 | 4.79 | 22.02 | 17.98** | -5.50** | 14.77** | -4.49** | | Giza 94 x Pima | S ₇ | 4.74 | 17.67 | 16.50** | -1.19 | 2.52** | -5.06** | | Giza 94 x Pima | S ₆ | -2.47 | 13.40 | 6.63 | -6.00** | 14.98** | -12.36** | | Giza 92 x Kars | henky | -31.81** | -28.11 | -28.94** | -3.42** | 5.27** | 5.86** | | Giza 92 x Suvi | n | 12.00** | 5.85 | -0.84 | -6.83** | -8.29** | -0.61 | | Giza 92 x Aust | raly 13 | 16.25** | 11.16 | 15.02** | -5.99** | -4.14** | 0.00 | | Giza 92 x Pima | 1 S ₇ | 13.32** | 4.61 | 5.44 | -3.12** | -7.91** | 3.70** | | Giza 92 x Pima | S ₆ | -29.03** | -32.21* | -27.37** | -0.62 | -5.08** | 3.70** | | Giza 96 x Kars | henky | -25.09** | -43.32** | -43.32** | -0.03 | -24.41** | -13.85** | | Giza 96 x Suvi | n | 19.07** | 5.48 | -3.03 | -10.38** | -10.77** | 0.61 | | Giza 96 x Aust | raly 13 | -4.48 | -20.01 | -22.64** | -5.99** | -16.16** | -3.38** | | Giza 96 x Pima | S ₇ | -27.46** | -37.76* | -38.84** | -1.54 | -14.48** | -0.92* | | Giza 96 x Pima | S ₆ | -12.65** | -26.50 | -27.12** | -1.51 | -15.49** | -0.62 | | LSD | 0.05 | 8.74 | 29.39 | 11.31 | 1.79 | 0.36 | 0.90 | | | 0.01 | 11.42 | 38.39 | 14.77 | 2.34 | 0.47 | 1.17 | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. Table 4. Cont. | Giza 90 x Karshenky -5.77** 4.59** -4.75** -2.29** 0.39 Giza 90 x Suvin -7.58** -1.39 -8.86** 13.74** -0.96 Giza 90 x Australy 13 -0.04 1.21 -5.70** 5.38** -2.36** Giza 90 x Pima S ₇ 5.34** 7.27** -2.85** 4.58** 0.04 Giza 90 x Pima S ₆ 2.56** 2.11** -0.95** 11.45** 0.08 Giza 95 x Karshenky 3.50** 3.16** 1.69** 1.45** 2.10** Giza 95 x Suvin -0.78** 6.17** 2.27** 3.79** 0.04 Giza 95 x Australy 13 3.94** 6.06** 3.31** 3.85** 1.61* Giza 95 x Pima S ₇ 17.31** 10.11** 1.67** -0.75** 1.34 Giza 95 x Pima S ₆ 8.51** 4.32** -0.66** -0.76** 0.35 Giza 86 x Karshenky 1.90** -4.25** -3.90** 15.87** -0.98 | Table 4. Cont. | | T | | | | | |---|-------------------------------|----------|----------|---------|---------|---------|---------| | Giza 90 x Suvin -7.58** -1.39 -8.86** -7.58** -1.39 -8.86** -7.71** -7.58** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.285** -7.27** -7.285** -7.285** -7.27** -7.285** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.27** -7.285** -7.28** -7.29** -7.28** -7.29** -7.28** -7.29** -7.28** -7.29** -7.28** -7.29** -7.28** -7.29** -7.28** -7.29** - | Genotypes | | LI | UHM | FS | MIC | UI | | Giza 90 x Australy 13 Giza 90 x Pima S ₇ Giza 90 x Pima S ₇ Giza 90 x Pima S ₈ Giza 90 x Pima S ₈ Giza 95 x Karshenky Giza 95 x Karshenky Giza 95 x Suvin Giza 95 x Australy 13 Giza 95 x Australy 13 Giza 95 x Australy 13 Giza 95 x Pima S ₇ Giza 95 x Pima S ₈ Giza 95 x Pima S ₇ ₈ Giza 86 x Australy 13 Giza 95 x Pima S ₈ Giza 86 x Australy 13 Giza 95 x Pima S ₈ Giza 86 x Australy 13 Pima S ₇ 1.11 ^{**} 0.59 0.65 ^{**} 6.35 ^{**} 0.04 Giza 94 x Karshenky 1.9.25
^{**} 1.2.33 ^{**} 4.13 ^{**} 1.167 ^{**} 0.292 ^{**} 1.167 ^{**} 0.47 Giza 94 x Australy 13 1.10.05 ^{**} 1.2.33 ^{**} 1.1.10 ^{**} 0.89 Giza 94 x Rustraly 13 1.10.05 ^{**} 1.2.33 ^{**} 1.1.10 ^{**} 0.08 Giza 94 x Pima S ₇ 1.1.110 ^{**} 0.89 Giza 94 x Pima S ₇ 1.1.110 ^{**} 0.89 Giza 94 x Pima S ₈ 2.0.81 ^{**} 2.04 ^{**} 0.63 ^{***} 1.083 ^{***} 0.094 Giza 94 x Pima S ₈ 2.081 ^{***} 1.090 ^{***} 1.1.43 ^{***} 1.08 Giza 92 x Rustraly 13 1.10.05 ^{***} 1.243 ^{***} 1.26 1.274 ^{***} 1.275 ^{***} 1.200 0.67 Giza 92 x Rustraly 13 1.26 0.62 ^{***} 1.274 ^{***} 1.281 ^{***} 1.291 1 | Giza 90 x Karshenky | 1 | -5.77** | 4.59** | -4.75** | -2.29** | 0.39 | | Giza 90 x Pima S ₇ Giza 90 x Pima S ₆ Giza 90 x Pima S ₆ Giza 90 x Pima S ₆ Giza 95 x Karshenky Giza 95 x Karshenky Giza 95 x Suvin Giza 95 x Australy 13 Giza 95 x Pima S ₇ Giza 95 x Pima S ₆ Giza 95 x Pima S ₇ Giza 86 x Karshenky 1.90** -4.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Australy 13 -2.58** 4.15** -2.92** 16.67** -0.43 Giza 86 x Pima S ₇ Giza 86 x Pima S ₇ Giza 86 x Pima S ₇ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Australy 13 -15.78** -0.68 -1.27** -1.90** -1.41** 0.08 Giza 94 x Pima S ₇ -2.08** -2.33** -4.13** -4.13** -4.16** -0.08 Giza 94 x Pima S ₇ -2.08** -2.33** -4.13** - | Giza 90 x Suvin | | -7.58** | -1.39 | -8.86** | 13.74** | -0.96 | | Giza 90 x Pima S₀ 2.56** 2.11** -0.95** 11.45** 0.08 Giza 95 x Karshenky 3.50** 3.16** 1.69** 1.45** 2.10** Giza 95 x Suvin -0.78** 6.17** 2.27** 3.79** 0.04 Giza 95 x Pima S₀ 17.31** 10.11** 1.67** -0.75** 1.34 Giza 95 x Pima S₀ 8.51** 4.32** -0.66** -0.76** 0.35 Giza 86 x Karshenky 1.90** -4.25** -3.90** 15.87** -0.98 Giza 86 x Suvin -8.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Pima S₀ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 86 x Pima S₀ -5.76** 2.47** -1.30** 7.14** 0.47 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Pima S₀ -2.01** -0.68 -1.90** | Giza 90 x Australy 1 | 3 | -0.04 | 1.21 | -5.70** | 5.38** | -2.36** | | Giza 95 x Karshenky 3.50** 3.16** 1.69** 1.45** 2.10** Giza 95 x Suvin -0.78** 6.17** 2.27** 3.79** 0.04 Giza 95 x Australy 13 3.94** 6.06** 3.31** 3.85** 1.61* Giza 95 x Pima S ₇ 17.31** 10.11** 1.67** -0.75** 1.34 Giza 95 x Pima S ₆ 8.51** 4.32** -0.66** -0.76** 0.35 Giza 86 x Karshenky 1.90** -4.25** -3.90** 15.87** -0.98 Giza 86 x Suvin -8.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Pima S ₇ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₆ -20.81** 2.04* 0. | Giza 90 x Pima S ₇ | | 5.34** | 7.27** | -2.85** | 4.58** | 0.04 | | Giza 95 x Suvin -0.78** 6.17** 2.27** 3.79** 0.04 Giza 95 x Australy 13 3.94** 6.06** 3.31** 3.85** 1.61* Giza 95 x Pima S ₇ 17.31** 10.11** 1.67** -0.75** 1.34 Giza 95 x Pima S ₆ 8.51** 4.32** -0.66** -0.76** 0.35 Giza 86 x Karshenky 1.90** -4.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Suvin -8.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Pima S ₇ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 94 x Karshenky -19.25** -2.33** -1.30** 7.14** 0.47 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S ₇ -2.081** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky -19.25** -2.081** -2.04* 0.63** 3.33** 0.23 Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 0.00 0.67 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₇ -3.55** -0.38 -1.60** 0.61 -1.61 -1.41 -1.44 | Giza 90 x Pima S ₆ | | 2.56** | 2.11** | -0.95** | 11.45** | 0.08 | | Giza 95 x Australy 13 Giza 95 x Pima S ₇ Giza 95 x Pima S ₆ R.51** Giza 95 x Pima S ₆ Giza 95 x Pima S ₆ Giza 95 x Pima S ₆ Giza 95 x Rima S ₇ Giza 95 x Pima S ₆ R.51** R.52** Giza 86 x Karshenky R.25** Giza 86 x Australy 13 Riza 86 x Australy 13 Riza 86 x Pima S ₇ Riza 94 x Karshenky Riza 94 x Australy 13 Riza 94 x Australy 13 Riza 94 x Pima S ₇ Riza 94 x Pima S ₇ Riza 94 x Pima S ₇ Riza 94 x Rishenky Riza 94 x Pima S ₇ Riza 94 x Pima S ₇ Riza 95 x Pima S ₇ Riza 95 x Pima S ₇ Riza 96 x Pima S ₇ Riza 97 x Pima S ₇ Riza 98 x Pima S ₇ Riza 99 x Pima S ₇ Riza 99 x Pima S ₈ Riza 99 x Rishenky 90 Ri | Giza 95 x Karshenky | • | 3.50** | 3.16** | 1.69** | 1.45** | 2.10** | | Giza 95 x Pima S ₇ 17.31*** 10.11*** 1.67*** -0.75*** 1.34 Giza 95 x Pima S ₆ 8.51*** 4.32*** -0.66*** -0.76*** 0.35 Giza 86 x Karshenky 1.90*** -4.25*** -3.90*** 15.87*** -0.98 Giza 86 x Suvin -8.25*** -5.93*** -7.12*** 14.29*** -2.28*** Giza 86 x Australy 13 -2.58*** 4.15*** -2.92*** 16.67*** -0.43 Giza 86 x Pima S ₆ -5.76*** 2.47*** -1.30*** 7.14*** 0.47 Giza 94 x Karshenky -19.25*** -2.33*** -4.13*** 11.67*** -0.89 Giza 94 x Suvin -15.78*** -0.58 -1.27*** 7.50*** -0.77 Giza 94 x Pima S ₇ -6.95** 2.43*** 0.63*** 10.83*** 0.43 Giza 94 x Pima S ₇ -6.95** 2.43*** 0.63*** 10.83*** 0.43 Giza 92 x Karshenky 4.92** 0.87 -3.44*** 3.20*** -0.89 Giza 92 x Pima S ₇ 1. | Giza 95 x Suvin | | -0.78** | 6.17** | 2.27** | 3.79** | 0.04 | | Giza 95 x Pima S ₆ 8.51** 4.32** -0.66** -0.76** 0.35 Giza 86 x Karshenky 1.90** -4.25** -3.90** 15.87** -0.98 Giza 86 x Suvin -8.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Australy 13 -2.58** 4.15** -2.92** 16.67** -0.43 Giza 86 x Pima S ₇ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₆ -20.81** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** -0.89 Giza 92 x Pima S ₇ 1.99** 1.26 | Giza 95 x Australy 1 | 3 | 3.94** | 6.06** | 3.31** | 3.85** | 1.61* | | Giza 86 x Karshenky 1.90** -4.25** -3.90** 15.87** -0.98 Giza 86 x Suvin -8.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Australy 13 -2.58** 4.15** -2.92** 16.67** -0.43 Giza 86 x Pima S ₆ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** -0.89 Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** | Giza 95 x Pima S ₇ | | 17.31** | 10.11** | 1.67** | -0.75** | 1.34 | | Giza 86 x Suvin -8.25** -5.93** -7.12** 14.29** -2.28** Giza 86 x Australy 13 -2.58** 4.15** -2.92** 16.67** -0.43 Giza 86 x Pima S ₇ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 86 x Pima S ₆ -5.76** 2.47** -1.30** 7.14** 0.47 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08
Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** -0.89 Giza 92 x Australy 13 -1.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -1.60** 0.86 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Pima S ₇ -3.55** -0.48 1.27** -0.41 0.05 0.06 1.61 0.41 0.04 | Giza 95 x Pima S ₆ | | 8.51** | 4.32** | -0.66** | -0.76** | 0.35 | | Giza 86 x Australy 13 -2.58** 4.15** -2.92** 16.67** -0.43 Giza 86 x Pima S ₇ 1.11** 0.59 -0.65** 6.35** 0.04 Giza 86 x Pima S ₆ -5.76** 2.47** -1.30** 7.14** 0.47 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₆ -20.81** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -0.42 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD | Giza 86 x Karshenky | <i>r</i> | 1.90** | -4.25** | -3.90** | 15.87** | -0.98 | | Giza 86 x Pima S7 1.11** 0.59 -0.65** 6.35** 0.04 Giza 86 x Pima S6 -5.76** 2.47** -1.30** 7.14** 0.47 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S7 -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S6 -20.81** 2.04* 0.63** 10.83** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** -0.89 Giza 92 x Pima S6 -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Pima S7 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S6 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** | Giza 86 x Suvin | | -8.25** | -5.93** | -7.12** | 14.29** | -2.28** | | Giza 86 x Pima S ₆ -5.76** 2.47** -1.30** 7.14** 0.47 Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** 2.07** Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** 2.07** Giza 92 x Pima S ₇ 1.99** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 1.02 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Pima S ₇ -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Pima S ₇ -3.55** -0.38 -3.1 | Giza 86 x Australy 1 | 3 | -2.58** | 4.15** | -2.92** | 16.67** | -0.43 | | Giza 94 x Karshenky -19.25** -2.33** -4.13** 11.67** -0.89 Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₆ -20.81** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** 2.07** Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Pima S ₇ 1.99** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 1.02 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** <td>Giza 86 x Pima S₇</td> <td></td> <td>1.11**</td> <td>0.59</td> <td>-0.65**</td> <td>6.35**</td> <td>0.04</td> | Giza 86 x Pima S ₇ | | 1.11** | 0.59 | -0.65** | 6.35** | 0.04 | | Giza 94 x Suvin -15.78** -0.58 -1.27** 7.50** -0.77 Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₆ -20.81** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** 2.07** Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -1.90** -3.79** -1.00 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD | Giza 86 x Pima S ₆ | | -5.76** | 2.47** | -1.30** | 7.14** | 0.47 | | Giza 94 x Australy 13 -10.05** 0.68 -1.90** 14.17** 0.08 Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₆ -20.81** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** 2.07** Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Pima S ₇ -3.55** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** <td>Giza 94 x Karshenky</td> <td>,</td> <td>-19.25**</td> <td>-2.33**</td> <td>-4.13**</td> <td>11.67**</td> <td>-0.89</td> | Giza 94 x Karshenky | , | -19.25** | -2.33** | -4.13** | 11.67** | -0.89 | | Giza 94 x Pima S ₇ -6.95** 2.43** 0.63** 10.83** 0.43 Giza 94 x Pima S ₆ -20.81** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** 2.07** Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 | Giza 94 x Suvin | | -15.78** | -0.58 | -1.27** | 7.50** | -0.77 | | Giza 94 x Pima S ₆ -20.81** 2.04* 0.63** 3.33** 0.23 Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** 2.07** Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Pima S ₇ -3.55** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 94 x Australy 1 | 3 | -10.05** | 0.68 | -1.90** | 14.17** | 0.08 | | Giza 92 x Karshenky 4.92** 0.87 -3.44** 3.20** 2.07** Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 94 x Pima S ₇ | | -6.95** | 2.43** | 0.63** | 10.83** | 0.43 | | Giza 92 x Suvin -11.43** 0.68 -2.81** 3.20** -0.89 Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 94 x Pima S ₆ | | -20.81** | 2.04* | 0.63** | 3.33** | 0.23 | | Giza 92 x Australy 13 -8.49** 1.07 -1.87** 0.00 0.67 Giza 92 x Pima S ₆ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 92 x Karshenky | • | 4.92** | 0.87 | -3.44** | 3.20** | 2.07** | | Giza 92 x Pima S ₇ 1.99** 1.26 -0.62** -1.60** 1.02 Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 92 x Suvin | | -11.43** | 0.68 | -2.81** | 3.20** | -0.89 | | Giza 92 x Pima S ₆ 15.75** 3.59** -2.81** -1.60** 0.86 Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 0.44 | Giza 92 x Australy 1 | 3 | -8.49** | 1.07 | -1.87** | 0.00 | 0.67 | | Giza 96 x Karshenky -13.83** -3.80** -1.90** -3.79** -1.00 Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 92 x Pima S ₇ | | 1.99** | 1.26 | -0.62** | -1.60** | 1.02 | | Giza 96 x Suvin -15.60** 0.67 -0.32 -1.52** -0.27 Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD | Giza 92 x Pima S ₆ | | 15.75** | 3.59**
| -2.81** | -1.60** | 0.86 | | Giza 96 x Australy 13 -11.30** -0.48 1.27** -3.08** -0.42 Giza 96 x Pima S ₇ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 96 x Karshenky | | -13.83** | -3.80** | -1.90** | -3.79** | -1.00 | | Giza 96 x Pima S ₇ Giza 96 x Pima S ₆ -3.55** -0.38 -3.16** 0.00 0.27 Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD | Giza 96 x Suvin | | -15.60** | 0.67 | -0.32 | -1.52** | -0.27 | | Giza 96 x Pima S ₆ -1.76** 0.57 -1.27** 4.55** 0.42 LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 96 x Australy 13 | | -11.30** | -0.48 | 1.27** | -3.08** | -0.42 | | LSD 0.05 0.60 1.61 0.41 0.34 1.44 | Giza 96 x Pima S ₇ | | -3.55** | -0.38 | -3.16** | 0.00 | 0.27 | | LSD 0.60 1.61 0.41 0.34 | Giza 96 x Pima S ₆ | | -1.76** | 0.57 | -1.27** | 4.55** | 0.42 | | 0.01 0.78 2.11 0.54 0.44 1.88 | LSD | 0.05 | 0.60 | 1.61 | 0.41 | 0.34 | 1.44 | | | LSD | 0.01 | 0.78 | 2.11 | 0.54 | 0.44 | 1.88 | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. Regarding to boll weight the results of heterosis versus mid-parent revealed that nineteen crosses out of 30 F_1 exhibited highly significant and positive heterosis, which ranged from 1.90% for Giza 92 x Australy13 to 21.11% for Giza 94 x pima S_6 , whereas, heterosis relative to betterparent showed that sixteen crosses had positive and significant heterosis, which ranged from 1.69% for Giza 94 x Karshenky to 22.77% for Giza 95 x Pima S_6 . Concerning seed index the results of heterosis versus mid-parent revealed that 18 of 30 crosses were exhibited highly significant positive heterosis which ranged from 1.05% for Giza 94 x Pima S7 to 19.93% for Giza 95 x Pima S₆, whereas, heterosis versus better-parent showed that thirteen crosses were positive and significant which ranged from 0.94% for Giza 90 x Karshenky to 13.42% for Giza 95 x Pima S7. For lint index the results of heterosis versus mid-parent revealed that 16 crosses out of 30 F₁ crosses were found to be significant and positive heterosis which ranged from 1.48% for Giza 94 x Pima S_7 to 20.01% for Giza 92 x Pima S₆, but for heterosis versus betterparent showed that 10 out of 30 crosses were significantly positive and the largest amount of heterosis were found for Giza 92 x Pima S₆ and Giza 95 x Pima S₇ with amounts of 15.75% and 17.31% respectively. Regarding to upper half mean the results of heterosis versus mid-parent revealed that 24 crosses out of 30 F_1 crosses were found to be significant and positive heterosis which ranged from 1.93% for Giza 90 x Australy13 to 10.93% for Giza 95 x Pima S_7 , whereas, heterosis versus better-parent showed that 13 crosses out of 30 F_1 crosses were found to be significant and positive heterosis which ranged from 2.04% for Giza 94 x Pima S_6 to 10.11% for Giza 95 x Pima S_7 . Concerning fiber strength the results of heterosis versus mid-parent revealed that 15 of 30 crosses were exhibited highly significant positive heterosis which ranged from 0.48% for Giza 96 x Pima S₆ to 5.16% for Giza 95 x Suvin, whereas, heterosis versus better-parent showed that seven crosses were exhibited significant positive heterosis which ranged from 0.63% for Giza 94 x Pima S_6 to 3.31% for Giza 95 x Australy13. Regarding to micronaire reading the results of heterosis versus mid-parent revealed that 13 of 30 crosses were exhibited highly significant negative direction which is a desirable direction for the trait which ranged from -0.37% for Giza 95 x Australy13 to -5.93% for Giza 96 x Karshenky, whereas, heterosis versus better-parent showed that eight crosses were negative and significant which ranged from -0.76% for Giza 95 x Pima S₆ to -3.79% for Giza 96 x Karshenky. For uniformity index the results of heterosis versus mid-parent revealed that 10 out of 30 crosses were exhibited significant positive heterosis which ranged from 1.39% for Giza 94 x Pima S₇ to 2.66% for Giza 92 x Karshenky, whereas, heterosis versus better-parent showed that Giza 95 x Karshenky, Giza 95 x Australy13 and Giza 92 x Karshenky were exhibited significant positive heterosis with values of 2.10%, 1.61 and 2.07 respectively. El-Disougi and Ziena (2001) reported that, heterosis versus mid-parents exhibited negative significant for seed index in the cross Giza 45 x Karshenky. They added that, the heterosis relative to betterparent was negative and significant for yield and yield components traits, except boll weight in the cross Giza 45 x Karshenky. #### Combining ability The estimates of general combining ability and specific combining ability are presented in Table (5) and Table (6). The results revealed that the line Giza 95 was significant and positive desirable for all yield traits studied. Giza 86 had significant and positive desirable GCA effects for lint percentage. Giza 94 had significant and positive desirable GCA effects for fiber strength. Giza 92 had significant and positive desirable GCA effects for seed index and fiber strength and negative desirable for micronaire reading, Giza 96 had significant and positive desirable GCA effects for fiber strength and negative desirable for micronaire reading. In this respect, the results of testers showed that Suvin had significant and positive desirable GCA effects for No. of bolls/plant. Australy13 had significant and positive desirable for No. of bolls/plant, seed cotton yield/plant and lint cotton yield/plant. Pima S7 showed significant and positive desirable GCA effects for seed index and lint index. The results of specific combining ability effects for crosses Giza 90 x Karshenky, Giza 95 x Pima S₇, Giza 92 x Karshenky and Giza 96 x Suvin were significant desirable SCA effects for some yield traits, while, the other crosses showed non significant but desirable SCA effects for some fiber traits. Abdel-Hafez et al (2007) reported significant and positive general combining ability effects for both lint percentage and seed index, the crosses Giza 86 x Karshneseki-2 and Giza 45 x Karshneseki-2 exhibited highly significant specific combining ability effects for yield and yield components, respectively. #### Proportional contribution Relative percentages of contribution of lines, testers and lines x testers interaction are shown in Table (7). The results showed that lines contribution was higher than testers contribution for all traits studied except No. of bolls/plant. However proportion contribution of lines x tester interaction was higher than of lines and testers for most traits studied. Al-Hibbiny (2011) found that proportion contribution of lines x tester interaction was higher than of lines and testers for all studied characters, except lint percentage. Lines contribution was higher than testers contribution for most studied traits. #### Genetic parameters Knowledge of gene action helps in the selection of parents for using in the hybridization programs and also in the choice of appropriate breeding procedure for the genetic improvement of various quantitative characters. Hence, insight into the nature of gene action involved in the expression of various quantitative characters is essential to a plant breeder iudicious for starting а breeding The aenetic program. variance component and dominance degree ratio were calculated for all traits studied are presented in Table (8). The results indicated that the non-additive of genetic parameters were larger than additive genetic variance with respect to all studied traits. These results indicated that nonadditive effects play a major role in the expression of these traits, while additive effects had a minor role. This indicated that the hybridization program would be effective in improvement of most studied traits. The importance of non-additive genetic variances was verified by the average degree of dominance which is more than one for all traits. This indicated that the overdominance played an important role of the dominance component. Basal et al, (2009) cleared that the predominance of non-additive gene action was found for all traits, except for the upper half mean fiber length (UHM) and fiber strength, which were controlled by an additive type gene action due to the high GCA variance. Table 5. Estimates of general combining ability effects of the parental genotypes for yield, yield components and fiber traits. | Parents | | NB/P | SCY/P | LCY/P | L. % | BW | SI. | |---------------------|------|--------|---------|---------|--------------|---------|----------| | Lines : | | 140,1 | 00171 | LOTA | L. 70 | | <u> </u> | | | | 0.05 | | 0.000 | 0.070 | 0.040 | 0.000 | | Giza 90 | | -2.05 | -7.54 | -2.632 | 0.379 | -0.013 | 0.068 | | Giza 95 | | 4.42** | 19.54** | 8.364** | 0.624* | 0.144* | 0.521** | | Giza 86 | | 1.41 | 6.28 | 3.145 | 0.769** | 0.046 | -0.346* | | Giza 94 | | -0.29 | -1.06 | -0.443 | -0.168 | -0.006 | -0.166 | | Giza 92 | | -2.07 | -9.08 | -4.519* | -1.051** | -0.045 | 0.281* | | Giza 96 | | -1.42 | -8.14 | -3.915* | -0.553 | -0.126* | -0.359* | | Len | 0.05 | 2.76 | 9.30 | 3.58 | 0.57 | 0.11 | 0.28 | | LSD | 0.01 | 3.61 | 12.14 | 4.67 | 0.74 | 0.15 | 0.37 | | Testers : | | | | | | | | | Karshenk | У | -3.22* | -10.41* | -3.946* | 0.044 | 0.027 | -0.410 | | Suvin | | 2.53* | 6.63 | 2.375 | -0.111 | -0.066 | -0.132 | | Australy 1 | 13 | 2.59* | 9.12* | 3.860* | 0.242 | 0.017 | 0.057 | | Pima S ₇ | | 1.06 | 4.09 | 1.360 | -0.210 | 0.000 | 0.507** | | Pima S ₆ | | -2.96* | -9.44* | -3.649* | 0.035 | 0.022 | -0.021 | | Len | 0.05 | 2.52 | 8.49 | 3.27 | 0.52 | 0.10 | 0.26 | | LSD | 0.01 | 3.30 | 11.08 | 4.27 | 0.68 | 0.14 | 0.34 | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. Table 5. Cont. | Parents | | LI | UHM | FS | MIC | UI | |---------------------|----------|----------|----------|----------|----------|----------| | Lines : | | | • | | | | | Giza 90 | | 0.162 | -0.501 | -0.196** | 0.182** | -0.093 | | Giza 95 | | 0.524** | 0.299 | 0.004 |
0.042 | 0.160 | | Giza 86 | | -0.003 | -0.848** | -0.296** | 0.242** | -0.907** | | Giza 94 | | -0.195* | 0.106 | 0.131* | -0.084 | 0.127 | | Giza 92 | | -0.116 | 0.499 | 0.178** | -0.271** | 0.333 | | Giza 96 | | -0.372** | 0.446 | 0.178** | -0.111* | 0.380 | | LSD | 0.05 | 0.19 | 0.51 | 0.13 | 0.11 | 0.45 | | LSD | 0.01 | 0.25 | 0.67 | 0.17 | 0.14 | 0.59 | | Testers : | | | | | | | | Karshenky | <u>'</u> | -0.286** | -0.687** | -0.137* | 0.002 | -0.067 | | Suvin | | -0.109 | -0.320 | -0.087 | 0.080 | -0.106 | | Australy 1 | 3 | 0.120 | 0.241 | 0.047 | 0.019 | -0.350 | | Pima S ₇ | | 0.267** | 0.324 | 0.086 | -0.064 | 0.167 | | Pima S ₆ | | 0.008 | 0.441 | 0.091 | -0.037 | 0.356 | | LSD | 0.05 | 0.17 | 0.47 | 0.12 | 0.10 | 0.42 | | LJD | 0.01 | 0.23 | 0.61 | 0.16 | 0.13 | 0.54 | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. Table 6. Estimates of specific combining ability effects of the 30 F_1 crosses for yield, yield components and fiber traits. | Cross | es | NB/P | SCY/P | LCY/P | L.% | BW | SI. | |----------------|-------------------------------|-------|----------|---------|----------|----------|---------| | Giza 90 x Kars | henky | 7.56* | 28.349** | 9.419* | -1.400* | 0.071 | 0.277 | | Giza 90 x Suvi | n | -2.40 | -13.676 | -4.542 | 0.637 | -0.190 | -0.334 | | Giza 90 x Aust | raly 13 | -2.26 | -6.056 | -2.254 | 0.251 | 0.054 | 0.043 | | Giza 90 x Pima | S ₇ | -3.04 | -12.589 | -4.754 | 0.008 | -0.069 | 0.060 | | Giza 90 x Pima | S ₆ | 0.14 | 3.972 | 2.130 | 0.505 | 0.135 | -0.046 | | Giza 95 x Kars | henky | -3.70 | -8.366 | -3.977 | -0.445 | 0.173 | -0.110 | | Giza 95 x Suvi | n | -4.92 | -10.581 | -4.064 | -0.006 | 0.212 | 0.179 | | Giza 95 x Aust | raly 13 | 5.09 | 8.395 | 4.051 | 0.597 | -0.270* | -0.243 | | Giza 95 x Pima | S ₇ | 6.53* | 24.295** | 10.297* | 0.675 | 0.007 | -0.027 | | Giza 95 x Pima | S ₆ | -3.00 | -13.744 | -6.306 | -0.821 | -0.122 | 0.201 | | Giza 86 x Kars | henky | 0.66 | 3.461 | 2.608 | 1.215 | 0.052 | 0.057 | | Giza 86 x Suvi | n | -3.51 | -12.854 | -3.893 | 0.937 | -0.036 | -0.288 | | Giza 86 x Aust | raly 13 | -2.05 | -4.278 | -1.298 | 0.239 | 0.075 | 0.023 | | Giza 86 x Pima | S ₇ | 0.66 | 3.189 | -0.864 | -1.779** | 0.045 | 0.540 | | Giza 86 x Pima | S ₆ | 4.24 | 10.483 | 3.445 | -0.612 | -0.137 | -0.332 | | Giza 94 x Kars | henky | 1.71 | -0.973 | 0.308 | 0.836 | -0.249* | -0.223 | | Giza 94 x Suvi | n | 1.66 | 0.346 | 0.842 | 0.427 | -0.184 | -0.234 | | Giza 94 x Aust | raly 13 | -2.81 | -3.945 | -2.276 | -0.654 | 0.174 | 0.610 | | Giza 94 x Pima | S ₇ | -1.30 | -2.645 | -0.276 | 0.764 | 0.084 | 0.093 | | Giza 94 x Pima | S ₆ | 0.74 | 7.216 | 1.401 | -1.373* | 0.175 | -0.246 | | Giza 92 x Kars | henky | -4.81 | -9.779 | -4.528 | -1.221 | 0.303* | 0.730* | | Giza 92 x Suvi | n | 2.65 | 6.839 | 2.618 | -0.038 | -0.085 | -0.048 | | Giza 92 x Aust | raly 13 | 2.87 | 9.615 | 3.566 | 0.033 | -0.021 | -0.370 | | Giza 92 x Pima | S ₇ | 3.58 | 8.149 | 2.600 | -0.348 | -0.137 | -0.420 | | Giza 92 x Pima | S ₆ | -4.29 | -14.824 | -4.257 | 1.574* | -0.060 | 0.108 | | Giza 96 x Kars | henky | -1.42 | -12.693 | -3.831 | 1.016 | -0.349** | -0.730* | | Giza 96 x Suvi | n | 6.51* | 29.926** | 9.038* | -1.958** | 0.283* | 0.726* | | Giza 96 x Aust | Giza 96 x Australy 13 | | -3.731 | -1.789 | -0.465 | -0.013 | -0.063 | | Giza 96 x Pima | Giza 96 x Pima S ₇ | | -20.398 | -7.003 | 0.680 | 0.071 | -0.247 | | Giza 96 x Pima | S ₆ | 2.18 | 6.896 | 3.586 | 0.727 | 0.008 | 0.314 | | LSD | 0.05 | 6.18 | 20.78 | 8.00 | 1.27 | 0.25 | 0.63 | | | 0.01 | 8.07 | 27.15 | 10.45 | 1.66 | 0.33 | 0.83 | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. ## Line x tester analysis for yield components and fiber properties Table 6. Cont. | Genotypes | | LI | UHM | FS | MIC | UI | |-------------------------------|-----------------------|---------|---------|-----------------|----------|---------| | Giza 90 x Karshenky | 1 | -0.180 | 1.007 | 0.123 | -0.382** | 0.827 | | Giza 90 x Suvin | | -0.042 | -0.527 | -0.360* | 0.240* | -0.001 | | Giza 90 x Australy 1 | Giza 90 x Australy 13 | | -0.721 | -0.160 | -0.099 | -1.257* | | Giza 90 x Pima S ₇ | | 0.093 | 0.696 | 0.101 | -0.016 | 0.293 | | Giza 90 x Pima S ₆ | | 0.098 | -0.454 | 0.296* | 0.257* | 0.138 | | Giza 95 x Karshenky | , | -0.169 | -0.260 | -0.077 | 0.158 | 0.107 | | Giza 95 x Suvin | | 0.095 | 1.207* | 0.373* | -0.020 | 0.612 | | Giza 95 x Australy 1 | 3 | 0.015 | 0.079 | 0.107 | -0.026 | 0.457 | | Giza 95 x Pima S ₇ | | 0.191 | -0.504 | -0.166 | -0.009 | -0.627 | | Giza 95 x Pima S ₆ | | -0.132 | -0.521 | -0.238 | -0.103 | -0.549 | | Giza 86 x Karshenky | r | 0.423* | -0.547 | 0.057 | 0.158 | -0.560 | | Giza 86 x Suvin | | 0.074 | -1.480* | -0.293* | 0.013 | -0.321 | | Giza 86 x Australy 13 | 3 | 0.076 | 1.359* | -0.027 | 0.174 | 0.190 | | Giza 86 x Pima S ₇ | | -0.183 | 0.076 | 0.168 | -0.176 | 0.073 | | Giza 86 x Pima S ₆ | | -0.390 | 0.592 | 0.096 | -0.170 | 0.618 | | Giza 94 x Karshenky | 1 | -0.074 | -0.267 | -0.170 | 0.084 | -0.627 | | Giza 94 x Suvin | | 0.015 | -0.033 | 0.080 | -0.160 | -0.054 | | Giza 94 x Australy 1 | 3 | 0.228 | -0.161 | -0.120 | 0.168 | 0.490 | | Giza 94 x Pima S ₇ | | 0.320 | 0.356 | 0.108 | 0.118 | 0.273 | | Giza 94 x Pima S ₆ | | -0.489* | 0.106 | 0.102 | -0.210 | -0.082 | | Giza 92 x Karshenky | ī | 0.141 | 0.473 | 0.017 | 0.104 | 0.900 | | Giza 92 x Suvin | | -0.046 | 0.040 | 0.033 | 0.027 | -0.361 | | Giza 92 x Australy 13 | 3 | -0.233 | -0.388 | 0.000 | -0.046 | -0.017 | | Giza 92 x Pima S ₇ | | -0.375 | -0.404 | 0.094 | -0.029 | -0.233 | | Giza 92 x Pima S ₆ | | 0.514* | 0.279 | -0.144 | -0.057 | -0.289 | | Giza 96 x Karshenky | | -0.142 | -0.407 | 0.050 | -0.122 | -0.647 | | Giza 96 x Suvin | | -0.096 | 0.793 | 0.167 | -0.100 | 0.126 | | Giza 96 x Australy 13 | | -0.178 | -0.168 | 0.200 | -0.172 | 0.137 | | Giza 96 x Pima S ₇ | | 0.017 | -0.218 | -0.306* | 0.111 | 0.220 | | Giza 96 x Pima S ₆ | | 0.400 | -0.001 | -0.001 -0.111 0 | | 0.164 | | LSD | 0.05 | 0.42 | 1.14 | 0.29 | 0.24 | 1.02 | | | 0.01 | 0.55 | 1.49 | 0.38 | 0.31 | 1.33 | ^{*,**} Significant and highly significant at 0.05 and 0.01 probability levels, respectively. Table 7. Proportional contributions of lines, testers and their interaction for yield, yield components and fiber traits. | Traits | Lines | Testers | Lines x Testers | | | |-------------------------|-------|---------|-----------------|--|--| | No. of bolls/plant | 20.97 | 26.12 | 52.90 | | | | Seed cotton yield/plant | 31.81 | 20.76 | 47.42 | | | | Lint cotton yield/plant | 40.15 | 20.13 | 39.71 | | | | Lint percentage | 33.90 | 1.87 | 64.23 | | | | Boll weight | 20.68 | 3.49 | 75.83 | | | | Seed index | 33.96 | 28.81 | 37.23 | | | | Lint index | 47.62 | 20.90 | 31.48 | | | | Fiber length | 31.42 | 23.15 | 45.43 | | | | Fiber strength | 46.64 | 11.95 | 41.41 | | | | Fiber fineness | 54.19 | 4.27 | 41.54 | | | | Uniformity index | 39.68 | 12.34 | 47.98 | | | Table 8. The partitioning of the genetic variance for yield, yield components and fiber traits. | Genetic
parameters
And
heritability | NB/P | SCY/P | LCY/P | L. % | BW | SI. | LI | UHM | FS | MIC | UR | |--|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | GCA | 0.40 | 6.99 | 1.47 | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 | 0.002 | 0.002 | 0.01 | | SCA | 10.29 | 121.53 | 13.69 | 0.79 | 0.02 | 0.07 | 0.03 | 0.21 | 0.02 | 0.02 | 0.07 | | $\sigma^2 A$ | 0.80 | 13.98 | 2.94 | 0.02 | 0.00 | 0.02 | 0.02 | 0.04 | 0.004 | 0.004 | 0.02 | | $\sigma^2 D$ | 10.29 | 121.53 | 13.69 | 0.79 | 0.02 | 0.07 | 0.03 | 0.21 | 0.02 | 0.02 | 0.07 | | $(\sigma^2 D./ \sigma A)^{\frac{1}{2}}$ | 3.59 | 2.95 | 2.16 | 6.28 | 0.00 | 1.87 | 1.22 | 2.29 | 2.24 | 2.24 | 1.87 | | σ²G. | 11.09 | 135.51 | 16.63 | 0.81 | 0.02 | 0.09 | 0.05 | 0.25 | 0.024 | 0.024 | 0.09 | | σ²E. | 21.03 | 247.96 | 33.28 | 1.23 | 0.04 | 0.19 | 0.10 | 0.59 | 0.044 | 0.034 | 0.36 | | σ²Ph | 32.12 | 383.47 | 49.91 | 2.04 | 0.06 | 0.28 | 0.15 | 0.84 | 0.07 | 0.06 | 0.45 | | H ² _b | 58.44 | 59.72 | 53.59 | 71.70 | 62.20 | 48.19 | 51.70 | 46.40 | 59.16 | 65.77 | 27.55 | | H ² n | 1.13 | 1.67 | 2.73 | 0.26 | 0.00 | 3.20 | 4.37 | 1.97 | 2.43 | 2.37 | 1.76 | #### Heritability The results of heritability in broad and narrow senses are illustrated in Table (8). The results revealed that broad sense heritability (h²_b%) estimates were larger than the corresponding values of narrow sense heritability (h2n%) for all studied traits. The highest broad heritability estimates was observed in case of lint percentage with values of 71.70% and the lowest was for uniformity index with value of 27.55%, while for narrow sense heritability, it was ranged from zero to 4.37% for boll weight and lint index, respectively. Al-Hibbiny (2004) noticed that heritability value in broad sense was 90% and 83% for boll weight and seed index respectively. Said (2005) found that the relative high values of heritability in broad sense (over 50%) were noticed for boll weight and lint percentage in three crosses, seed index in crosses I and III. High heritability estimates in narrow sense were found for boll weight, lint percentage and seed index in crosses I and III. #### **REFERENCES** - Abdel-Hafez, A.G., M.S. El-Keredy, A.F. El-Okkia and B.M.R. Gooda (2007). Estimates of heterosis and combining ability for yield, yield components and fiber properties in Egyptian cotton (Gossypium barbadense L). Egypt Journal of Plant Breeding 11(1): 423-435. - Al-Hibbiny Y.I.M. (2015). Estimation of heterosis, combining ability and gene action by using line X tester analysis in cotton (Gossypium barbadense L.). Egypt. J. Plant Breed. 19(2):385 405. - Al-Hibbiny, Y.I.M. (2004). Relation between the factors affecting boll opening and cotton yield and quality in Egyptian cotton. M.Sc.Thesis, Agron. Dept. Fac. Agric., Al-Azhar Univ. Egypt. - Al-Hibbiny, Y.I.M.
(2011). Breeding of some boll characters and its contents in cotton. Ph.D. Thesis, Agron. Dept. Fac. Agric., Tanta Univ. Egypt. - Allard, R.W. (1960). Principles of Plant Breeding. John Wiley, New York. - Amein, M.M.M., M.I. Masri, A.M.R. Abd El-Bary and S.S. Attia (2013). Combining ability and heterosis for yield and fiber quality traits in cotton (Gossypium barbadense L.). Egypt J. Plant Breed. 17 (5): 129-141. - Baloch, M. J., J. A. Solangi, W. A. Jatoi, I. H. Rind and F. M. Halo (2014). Heterosis and specific combining ability estimates for assessing potential crosses to develop F₁ hybrids in upland cotton. Pak. J. Agri., Agril. Engg., Vet. Sci., 30 (1): 8-18. - Basal, H., A. Unay, O. Canavar and I. Yavas (2009). Combining ability for fiber quality parameters and within-boll yield components in intraspecific and interspecific cotton populations Spanish Agric. Res. 7(2), 364-374. - Cochran, W.C. and G.M. Cox (1957). Experimental Design. 2nd ed., John Wiley and Sons Inc., New York. U.S.A. - El-Disouqi, A.E. and A.M. Ziena (2001). Estimates of some genetic parameters and gene action for yield and yield components in cotton. J. Agric. Sci., Mansoura Univ., 26(6): 3401 3409. - EL-Seoudy, Alia A., N.Y. Abdel-Ghaffar, H.Y. Awad, A. Abdel-Hady and Sawsan I.M. Darweesh (2014). Evaluation of some crosses for economic traits in cotton (Gossypium barbadense L.) Egypt. J. Agric. Res., 92 (1): 183-193. - Kempthorne, O. (1957). An Introduction to Genetic Statistics. Iowa State Univ. John Wiley and Sons Inc. New York, U.S.A. - Linga swamy M., M. Gopinath and K. Gopala Krishna Murthy (2013). Line x Tester Analysis for Yield and Yield - Attributes in upland Cotton (Gossypium hirsutum L.) Helix. 5:378-382. - Mabrouk, A.H., M.A.A. EI-Dahan and Eman M.R. Saleh (2018). Diallel analysis for yield and fiber traits in cotton. Egypt. J. Plant Breed. 22(1):109–124 (2018). - Mather, K. (1949). Biometrical Genetics. Dover Publication. Inc. New York. - Said, S.E.R.N. (2005). Studies on breeding for boll worm resistance in cotton. M.Sc. Thesis, Agron. Dept. Fac. Agric., Al-Azhar Univ.Egypt. - Samreen, K., M.J. Baloch, Z.A. Soomro, M.B. Kumbhar, N.U. Khan, N. Kumboh, W.A. Jatoi and N.F. Veesar (2008) Estimating combining ability through - Line × Tester analysis in upland cotton. Sarhad J. Agric. 24,.4, 581-586. - Singh, R.K. and B.D. Chaudhary (1979). Biometrical Methods in Quantitative Genetic Analysis. 2nd ed., Kalyani, Publishers, Daryagnai, New Delhi. - Steel, R.G.D. and J.H. Torrie (1985). Principles and Procedures of Statistics. Mc Graw-Hill, Book company, Inc., New York. - Wajid Ali Jatoi, Muhammad Jurial Baloch, Nasreen Fatima Veesar and Sudheer Ahmed Panhwar (2011) Combining ability estimates from Line X Tester analysis for yield and yield components in upland cotton genotypes. J. Agric. Res., 2011, 49(2). # تحليل السلالة x الكشاف لبعض صفات المحصول والجودة في بعض هجن أقطان الباربادنس # يسري ابراهيم محمد الحبيني، عادل حسين مبروك، بديعة أنور محمود معهد بحوث القطن – مركز البحوث الزراعية – الجيزة – مصر ### الملخص العربي أجريت هذه الدراسة في محطة البحوث الزراعية بسخا – معهد بحوث القطن – مركز البحوث الزراعية – مصر خلال موسمي الزراعة 2017 و 2018 وتهدف هذه الدراسة الي تقدير قوة الهجين والقدرة علي التآلف ونسبة المساهمة ومكونات التباين الوراثي ودرجة التوريث لبعض الصفات لستة أصناف مصرية من القطن كسلالات وهي جيزة 90، جيزة 90، جيزة 90، جيزة 90، جيزة 90، جيزة 90، وخمسة تراكيب وراثية ككشافات وهي كارشنكى وسيوفين واسترالي 13 وبيما س6 وبيما س7 باستخدام طريقة تحليل السلالة x الكشاف. وفي موسم 2018. تم تقييم إحدي وأربعون تركيب وراثي (إحدي عشر صنفاً وثلاثون هجين للجيل الأول) في تجربة قطاعات كاملة عشوائية في ثلاث مكررات. ### وكانت اهم النتائج المتحصل عليها مايلي: أشارت نتائج تحليل التباين لكل من التراكيب الوراثية والأباء والهجن والاباء x الهجن وجود فروق معنوية لكل الصفات المدروسة ماعدا صفة عدد اللوز/النبات بالنسبة للاباء وصفة معدل الحليج بالنسبة للهجن وصفة متائة التيلة بالنسبة للهجن والاباء x الهجن. أشارت دراسة قوة الهجين الي وجود قوة هجين مفيدة محسوبة بالنسبة لمتوسطات الابوين وأفضل الأباء وذلك لمعظم الصفات المدروسة، وقد أظهرت الهجن جيزة 95 × كارشنكي وجيزة 95 × استرالي 13 وجيزة 95 × بيما س7 أعلي قيم نقوة الهجين بالنسبة لمتوسط الابوين وأفضل الأباء لمعظم الصفات المدروسة. بينما أظهر الهجينين جيزة 90 × استرالي 13 وجيزة 86 × كاراشنكي أعلي قيم نقوة الهجين بالنسبة لمتوسط الابوين نكل الصفات المحصولية المدروسة. كذلك أظهرت الهجن جيزة 92 × كاراشنكي وجيزة 92 × استرالي 13 وجيزة 92 × بيما س7 وجيزة 96 × بيما س7 أعلى قيم نقوة الهجين بالنسبة لأفضل الأباء لمعظم صفات التيلة. أظهر الصنف جيزة 95 (كسلالة) أفضل قدرة عامة علي التالف لكل الصفات المحصولية المدروسة بينما أظهر الصنف جيزة 92 (كسلالة) أفضل قدرة عامة علي التالف لصفات معامل البذرة ومتانة التيلة وقراءة الميكرونير كما أظهر الصنف جيزة 96 (كسلالة) أفضل قدرة عامة علي التالف لصفتي متانة التيلة وقراءة الميكرونير. كذلك أظهر الصنف استرائي 13 (ككشاف) أفضل قدرة عامة علي التالف لصفات عدد اللوز علي النبات ومحصول القطن الزهر ومحصول القطن الشعر. أظهرت الهجن جيزة 90 x كارشنكي وجيزة 95 x بيما س7 وجيزة 92 x كارشنكي وجيزة 96 x بيما س7 أعلي قدرة خاصة على التالف لبعض الصفات المحصولية. ### Line x tester analysis for yield components and fiber properties أظهر تقدير نسبة المساهمة الي أن مساهمة تفاعل السلاله x الكشاف أعلي من مساهمة كل من السلالات و الكشافات لمعظم الصفات المدروسة. كانت قيم المكونات الوراثية تدل علي أن التباين الراجع للسيادة كان أعلي من التباين الإضافي لكل الصفات المدروسة. قيم درجة التوريث بالمعني الواسع كانت أعلي من قيم درجة التوريث بالمعني النصيق لكل الصفات المدروسة وكانت أعلي قيمة لدرجة التوريث بالمعني الواسع لصفة معدل الحليج (71.70%) بينما كانت أقل قيمة لصفة درجة الانتظام (27.55%). كانت درجة التوريث بالمعني الضيق تتراوح بين صفر لصفة وزن اللوزة و4.37% لصفة معامل الشعر. عموما فانه يوصي باستخدام الصنف جيزة 95 والصنف استرائي 13 في برامج التربية لتحسين وزيادة القدرة الإنتاجية للأصناف الجديدة بينما يمكننا اعتبار الصنفين جيزة 92 وجيزة 96 كآباء متفوقة في برامج التربية للحصول على أصناف جديدة عالية الجودة. #### السادة المحكمين أ.د/ عيسى محمود غنيم مركز البحوث الزراعية - الجيزة أ.د/ حسان عبدالجيد دوام كلية الزراعة - جامعة المنوفية